
BACKGROUND IN SYMPLECTIC GEOMETRY

NILAY KUMAR

Today I want to introduce some of the symplectic structure underlying classical
mechanics.

The key idea is actually quite old and in its various formulations it dates back
to the seventeenth to eighteenth centuries. This is the variational approach to
mechanics:

Meta-theorem: the path taken by a system between two points
in time is the one for which a certain quantity is extremized.

The most familiar example is that of light, which travels from one point to another
by a path taking the shortest amount of time. It turns out that light is not special.
All of classical mechanics can be phrased in accordance to this meta-theorem.

1. Hamiltonian mechanics

Let us consider systems whose configurations are described by points in Eu-
clidean space x ∈ Rn moving along trajectories x(t). In particular, we might
consider a particle in vacuo, a particle attached to a spring or swinging from a pen-
dulum, and so on. Given two points in time t1 and t2, which path does our system
take, i.e. how does it evolve over time? According to the variational principle above
we should find a quantity that is to be extremized by the physical path. We define
the action functional S as

(1) S(x) =

∫ t2

t1

L(t, x, ẋ)dt,

where L is the Lagrangian of our system, which encodes the data of the system at
hand. In particular, we will take it to be difference of kinetic and potential energies
of the system.

Proposition 1. An extremal path x : [t1, t2] → Rn is a solution to the Euler-
Lagrange equations

(2)
d

dt

∂L

∂ẋj
− ∂L

∂xj
= 0.

Proof. Extremality implies that

0 =
d

dε

∣∣
ε=0

S(x+ εξ)
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for every ξ : [t1, t2]→ Rn with ξ(ti) = 0. Hence

0 =

∫ t2

t1

(∑ ∂L

∂xj
ξj +

∑ ∂L

∂ẋj
ξ̇j
)
dt

=

∫ t2

t1

∑(
∂L

∂xj
− d

dt

∂L

∂ẋj

)
ξjdt,

as desired. �

Example 2. As a first check of physical relevance, we show that this variational
approach reproduces Newton’s second law. Suppose we are given a particle of mass
m in Rn acted upon by a conservative force F (x) = −∇U(x), where U(x) is the
associated potential energy. Then the Lagrangian for the system can be written

(3) L(t, x, ẋ) =
1

2
m|ẋ|2 − U(x),

and the Euler-Lagrange equations become:

0 =
d

dt
(mẋ)−∇U

= mẍ− F,

which is precisely Newton’s law, that the force impressed upon an object is propor-
tional to its experienced acceleration. In this picture, Newton’s law emerge as the
“equations of motion” of our system.

The above formalism for obtaining the equations of motion for a system is
known as Lagrangian mechanics. Symplectic geometry emerges when we rewrite
the second-order Euler-Lagrange equations as twice as many first-order equations
to obtain Hamiltonian mechanics. Introduce the variable

(4) pj =
∂L

∂ẋj

and define the Hamiltonian of a system to be

(5) H(t, x, p) =
∑

pj ẋj − L,

where we think of ẋ, by the implicit function theorem, as a function of the new vari-
able p.1 The Hamiltonian is actually a very natural quantity: where the Lagrangian
is the difference of kinetic and potential energy, the Hamiltonian is actually the sum
– the total energy of the system. Moreover, the new variable p can be thought of
as momentum. Now it is straightforward to rewrite the Euler-Lagrange equations
as Hamilton’s equations:

(6) ẋ =
∂H

∂p
, ṗ = −∂H

∂x
.

Exercise 3. Derive Hamilton’s equations from the Euler-Lagrange equations and
the definitions above. Recast the example above in Hamiltonian mechanics and
verify the physical interpretations just mentioned.

1To apply the implicit function theorem we require that the Hessian of L with respect to ẋj is
nonsingular, but we will ignore this technical point.



BACKGROUND IN SYMPLECTIC GEOMETRY 3

The motivation for using Hamiltonian mechanics instead of the equivalent La-
grangian mechanics is the following. Take coordinates z = (x1, . . . , xn, p1, . . . , pn) ∈
R2n. Then Hamilton’s equations above become

(7)
dz

dt
= −ω0∇H(t, z), ω0 =

(
0 − idRn

idRn 0

)
.

To put it more geometrically, we have shown that the principle of least action
implies that the trajectory or time-evolution of a system is given as the flow along
the “Hamiltonian vector field” −ω0∇H(t, z). Notice the following two things. First,
our geometry is always even dimensional, as we introduce a momentum coordinate
for each spatial coordinate. Second, position and momentum are “intertwined”
by a skew-symmetric nondegenerate bilinear form ω0. This is the beginnings of
symplectic geometry.

2. Symplectic geometry

Let M be a smooth manifold (without boundary). A symplectic structure on
a smooth manifold M is the data of a closed, nondegenerate 2-form ω ∈ Ω2(M). A
symplectic manifold is a pair (M,ω), where we call ω the “symplectic” form.

Example 4. Let M = R2n with global coordinates (x1, . . . , xn, p1, . . . , pn). We
can equip it with a symplectic form

(8) ω0 =
∑

dxi ∧ dpi

Exercise 5. Show that every symplectic manifold is even dimensional. Hint: notice
that a real skew-symmetric matrix of odd dimension must have a kernel.

A symplectic form satisfies both an algebraic condition (nondegeneracy) as well
as a topological condition (ω defines a class in H2(X;R)). These conditions make
symplectic geometry an interesting mixture of “soft” and “rigid”. As an example,
consider the following surprising theorem:

Theorem 6 (Darboux). Any two symplectic manifolds are locally symplectomor-
phic, i.e. locally diffeomorphic with the diffeomorphisms preserving the symplectic
forms under pullback.

Compare this with Riemannian geometry – certainly not every Riemannian man-
ifold of the same dimension is locally isometric! Curvature provides a local invari-
ant of Riemannian manifolds, whereas Darboux’s theorem demonstrates that every
symplectic manifold (M,ω) is locally symplectomorphic to (R2n, ω0). In this sense,
symplectic geometry lacks local invariants.

The easiest way to obtain a symplectic manifold is by taking the cotangent
bundle of any manifold.

Example 7. Let M be a smooth manifold of dimension n. Then the cotangent
bundle π : T ∗M can be equipped with a symplectic form as follows. Define the
canonical 1-form θ ∈ Ω1(T ∗M) by

(9) θp(v) = ξ(π∗v),

for p = (x, ξ) and v ∈ TpT ∗M . Then the symplectic form on T ∗M is the exterior
derivative

(10) ω = −dθ.
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Exercise 8. Show that the canonical 1-form is the unique 1-form such that for
every λ ∈ Ω1(M), λ∗θ = λ.

Exercise 9. Check that the 2-form defined on T ∗M above is indeed nondegenerate.
Then verify that the symplectic form defined on R2n above arises from viewing R2n

as the cotangent bundle of Rn. Hint: nondegeneracy is a local condition, so local
coordinates may be helpful.

With these basic definitions and examples in mind, let us return to physics. Let
us set up “Hamiltonian mechanics” on an arbitrary symplectic manifold.

Fix a symplectic manifold (M,ω). We should think of M as the phase space
of our system: the space of all configurations (where “configuration” is meant to
refer to both position and momentum, hence dimM = n = 2m). In the example
above of a particle in Rn, our phase space was the cotangent space T ∗Rn ∼= R2n,
where the cotangent directions are thought of as momentum coordinates.

Axiom 1: The configuration space of states of a system is a sym-
plectic manifold.

For any given state in the system, we ought to be able to measure physical quan-
tities of interest. Moreover, these quantities should vary smoothly under small
perturbations in state. Thus we define an observable of our system simply to
be a smooth function f ∈ C∞(M). For our particle, the coordinate functions on
R2n are interesting observables (position and momentum), as is say the energy
H = p2/2m+ U(x). According to our physical principles above the Hamiltonian
H ∈ C∞(M) of our system is distinguished in the sense that it should determine
time-evolution. Hence let us denote by (M,ω,H) the data of our Hamiltonian
system.

Axiom 2: Observable quantities of a system are smooth functions
on the symplectic manifold.

Time-evolution of the system should be given by a symplectomorphism, i.e. a
self-diffeomorphism of M pulling back ω to itself. Which one? Well notice that the
nondegeneracy of ω uniquely defines a vector field vH associated to H by

(11) dH = ιvHω,

where ι is contraction. We call vH the Hamiltonian vector field for H. We
obtain a flow φtH : M → M by integrating vH . One can check that each φtH is a
symplectomorphism and moreover that vH is tangent to the level sets of constant
energy H. In words, given an initial t = 0 configuration p ∈M , the system is given
by φtH(p) at some later time t > 0.

Exercise 10. Check these assertions.

Axiom 3: We distinguish a Hamiltonian H ∈ C∞(M) to deter-
mine the time-evolution of the system.

Let’s look closer at the differential equation for the flow. By Darboux’s theorem
we have a chart V ⊂ M in which the symplectic form is given ω =

∑
dxi ∧ dpi

with respect to coordinates (x1, . . . , xn, p1, . . . , pn). Then the Hamiltonian vector
field for H satisfies

(12) dH =
∑(

∂H

∂xi
dxi +

∂H

∂pi
dpi
)

= ιvH
∑

dxi ∧ dpi
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Solving for vH we find that

(13) vH =
∑(

∂H

∂pi
∂

∂xi
− ∂H

∂xi
∂

∂pi

)
.

The differential equation φtH = (xi(t), pi(t)) = vH can now be written

(14)
dxi

dt
=
∂H

∂pi
,

dpi

dt
= −∂H

∂xi
.

These are precisely Hamilton’s equations! Thus we see that symplectic geometry
provides a natural home for Hamiltonian mechanics.

Exercise 11. Suppose (X, g) is a Riemannian manifold. Let H ∈ C∞(T ∗X) be
given by

(15) H(x, p) =
1

2
|px|2g,

i.e. a purely kinetic term. Show that the Hamiltonian flow on T ∗X is dual to the
geodesic flow on TX. In other words, the integral curves of vH project to geodesics
of g on X.

Exercise 12. Define the Poisson bracket on C∞(M) as

(16) {f, g} = ω(vf , vg).

Check that the Poisson bracket gives C∞(M) the structure of a Poisson algebra,
i.e. a Lie algebra where the Lie bracket is a derivation. A Poisson manifold is
a smooth manifold together with a Poisson algebra structure on C∞(M). Check
that time-evolution of a function f is given by {H, f}.

Show that g is a Lie algebra then g∗ is naturally a Poisson manifold via the Lie
bracket.

3. Symmetries

Last week Sean showed, in the graduate student seminar, how to (approximately)
explain the patterns in the periodic table as an exercise in basic quantum mechan-
ics. The heart of the argument was that the Hamiltonian of the system should
be invariant under rotation (as the given system was, after approximation, spher-
ically symmetric). This then implied that the Hilbert space H of states of the
system is a representation of SO(3,R), and hence must split as irreducibles, from
which we deduced the namesake periodic phenomena. This example is just one of
many instances where symmetry principles yield powerful methods for attacking
problems.

So the last thing I want to discuss is the study of group actions on symplectic
manifolds. This is a huge industry, so I will focus on one particular result of interest
in physics known as Noether’s theorem.

Meta-theorem: Continuous group actions yields conserved quan-
tities.

As specific instances of this result, one might hear a physicist say: “the system
is translationally symmetric, hence linear momentum must be conserved,” or “the
system is time-translationally symmetric, hence energy must be conserved.”

In order to make these statements precise, we will need the langague of moment
maps.
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Definition 13. Suppose a Lie group G acts on (M,ω) through symplectomor-
phisms. By differentiation, the G-action yields a g-action, i.e. a vector field
ξM ∈ Γ(TM) for each ξ ∈ g. One can check that the contraction ιξMω is a closed
1-form. This motivates the following definition. We say that the action is weakly
Hamiltonian if there exists a linear “comoment map” κ : g→ C∞(M) such that

(17) ιξMω = dκ(ξ)

for all ξ ∈ g. For weakly Hamiltonian actions we require that the contraction is not
only closed but moreover exact.

It is often convenient to repackage this data as follows. A map

(18) µ : M → g∗

is a moment map for the G-action if for each p ∈M ,

(19) κ(ξ)(p) = 〈µ(p), ξ〉,

where 〈·, ·〉 is the evaluation pairing between g∗ and g.

Using the theory of Lie algebra cohomology one can show the following nontrivial
result.

Theorem 14. Let G act on (M,ω) through symplectomorphisms. If g is a semisim-
ple Lie algebra then there exists a (unique) (co)moment map for the action.

Exercise 15. Let G act on (M,ω) through symplectomorphisms. Show that there
is a well-defined linear map

(20) H1(g,R)∗ ∼= g/[g, g] H1
dR(M,R)

sending [ξ] 7→ [ιξMω]. Show that the action of G is weakly Hamiltonian if and
only if this map is identically zero. This presents the cohomological obstruction
mentioned above.

We say that a weakly Hamiltonian action is Hamiltonian if the comoment map
κ is in fact a Lie algebra homomorphism. Show that the G-action defines a cocycle
[τ ] ∈ H2(g,R) which vanishes if and only if the G-action is Hamiltonian.

Finally, recall that if g is a semisimple Lie algebra over a field of characteristic
zero and V is any finite-dimensional g-module then H1(g, V ) = H2(g, V ) = 0. This
is known as Whitehead’s lemma. Using Whitehead’s lemma, the theorem follows
(though uniqueness takes some work).

This brings us to the following beautiful theorem, due originally to Noether,
though first stated in this fashion by Souriau and Smale (I believe).

Theorem 16 (Noether, Souriau, Smale). Let µ : M → g∗ be a moment map for a
weakly Hamiltonian G-action on (M,ω). Then µ is constant along the flow of the
Hamiltonian vector field associated to any G-invariant function H ∈ C∞(M).

Proof. Since H ∈ C∞(M)G, we have

(21) H = ψ∗exp(tξ)H,
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for ξ ∈ g, where ψg is the symplectomorphism given by acting by g. Differentiating
this equation at t = 0 we obtain,

0 =
d

dt

∣∣
t=0

ψ∗exp(tξ)H

= LξMH = dH(ξM )

= ω(vH , ξM ) = −dκ(ξ)(vH)

= −vHκ(ξ).

This shows that κ(ξ) is constant along the Hamiltonian flow of H for each ξ ∈ g.
By definition, κ(ξ)(p) = 〈µ(p), ξ〉 for p ∈ M , so µ must be constant along the
Hamiltonian flow of H as well. �

The statement of the theorem is quite a mouthful, so let’s unpack it in the
following example.

Example 17. The free one-particle system in Rn is represented by the symplectic
manifold (T ∗Rn ∼= R2n, ω) and has Hamiltonian H = |p|2/2m. Spatial translation
by a group element v ∈ Rn is the action of Rn on Rn as x 7→ x + v. This action
lifts naturally to T ∗Rn as (x, p) 7→ (x+ v, p). The associated Lie algebra action is
by LieRn ∼= Rn as ξ 7→ ξT∗R3

∑
ξi∂/∂xi. Then

(22) ιξT∗R3
ω =

(∑
dxi ∧ dpi

)
ξT∗R3 =

∑
ξidpi

so we obtain a comoment map κ : LieRn → C∞(T ∗Rn) given by

(23) κ(ξ) =
∑

ξipi.

We thus obtain a moment map µ : T ∗Rn → (LieRn)∗ determined by

(24)
∑

ξipi = 〈µ(x, p), ξ〉.

Identifying (R3)∗ with R3 with the standard Euclidean metric, we conclude that

(25) µ(x, p) = p.

By Noether’s theorem we find that the linear momentum p is conserved under time-
evolution of the system, as the Hamiltonian H = |p|2/2m is invariant under spatial
translation. This is what a physicist means when she says that spatial-translational
invariance of a system implies conservation of momentum.

Exercise 18. The free one-particle system in R3 exhibits rotational invariance. Lift
this symmetry to the cotangent bundle and write down the corresponding moment
map

(26) µ : T ∗R3 so(3,R).

Identifying so(3,R) with the Lie algebra (R3,×), show that

(27) µ(x, p) = x× p.
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