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These are very rough notes from the lectures at the SMS conference in Toronto.
A few of the lectures are missing and many of them are missing diagrams and the
like. Corrections very welcome!

1. June 11, 2018 – Jacob Lurie

In this first lecture I would like to give a historical introduction to some number
theoretic problems, which we will later use factorization homology to study. We’ll
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2 NILAY KUMAR

start with quadratic forms in two variables:

x2 + y2 x2 − y2 − x2 − y2.

The basic question one might ask about these is whether they’re equivalent (under
a linear change of basis). It turns out that if we work over C then all of these
are equivalent, but over R they are not. Indeed, over R, they are positive-definite,
indefinite, and negative-definite. Notice that given

x2 + y2 x2 + 3y2

we can see that reducing mod 3 will degenerate the one on the right and cannot
possibly be equivalent there. Hence they cannot be equivalent over Z.

The mathematics I’m going to describe in this lecture began with the question as
to whether these two methods shown above were the only ways of checking whether
quadratic forms are equivalent. Let’s be more precise. Let q, q′ be positive definite
quadratic forms over Z. We say that q and q′ are in the same genus if they are
equivalent mod N for every N (from now on everything will be positive-definite
and over Z and every form will involve the same number of variables). These
two examples cannot be distinguished by the methods mentioned above. Are they
equivalent? Not necessarily, but almost.

Let q be a quadratic form over Z. Then for any commutative ring R we write
Oq(R) for the set of invertible n× n matrices preserving the form,

Oq(R) = {A ∈ GLn(R) | q = q ◦A}.

In the case where R = R this is a familiar object, a compact Lie group. Inside here
we have another group Oq(Z) ⊂ Oq(R), which is the set of matrices preserving a
certain lattice. It is easy to check that Oq(Z) is actually finite. We now define the
mass of q

mass(q) =
∑

q∈genus(q)

1

|Oq(Z)|
.

This is some sort of weighted or with-multiplicity count of genus-equivalence classes
of quadratic forms.

There is a nice formula for the mass (see the title of this talk). I’m not going
to state it for you in generality, since it can get kind of complicated. We’ll state it
in a special case, but we first need a definition. We say that a quadratic form q is
unimodular if it is nondegenerate mod p for all p. This is a very strong condition
– none of the examples above are unimodular. For instance notice that

x2 + y2 ≡ (x+ y)2 mod 2.

It turns out that the number of variables in a unimodular quadratic form has to be
divisble by 8. Moreover it turns out that any two unimodular quadratic forms are
in the same genus. The mass formula tells us∑ 1

|Oq(Z)|
=

ζ(2)ζ(4) · · · ζ(n− 2)ζ(n/2)

vol(S1) · vol(S2) · · · vol(Sn−1)
.

where the sum is over the q unimodular in n variables.

Example 1. Let n = 8. Then the right hand side of the mass formula is

1

21435527
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which will be familiar as the rank of the E8 lattice. Now the mass formula tells us
that only one unimodular form in 8 variables.

In general things are not so nice.

Example 2. If n = 32 then it turns out that the right hand side is about 40
million. This implies that there exist millions and millions of unimodular quadratic
forms in 32 variables.

We will now provide a different way of thinking about what this mass formula
is saying, due to Tamagawa and Weil. Let q and q′ be in the same genus. In other
words, for each N > 0 there exists some matrix AN ∈ GLn(Z/NZ) such that

q = q′ ◦AN
for each N . One may as well assume that these AN are compatible with each other,
i.e. as N varies A = {AN}N>0 ∈ GLn(Ẑ). Recall that Ẑ is the profinite completion
of the integers,

(1) Ẑ = limZ/NZ =
∏
p

Zp Zp = limZ/pkZ.

Hence q, q′ are equivalent over the p-adics and thus over Qp = Zp[p−1] for all p.
But of course they are also equivalent over R since they are positive-definite. We
now invoke something non-trivial — the Hasse-Minkowski theorem. This theorem
tells us that q and q′ are equivalent over Q if we have equivalence over all the
completions of Q i.e. the reals and the Qp. Hence q = q′ ◦B for some B ∈ GLn(Q).
Now

q = q′ ◦A = q ◦B−1 ◦A
whence B−1 ◦A ∈ Oq(Q)\Oq(Afin)/Oq(Ẑ) where

Afin = Ẑ⊗Q ⊂
∏
p

Qp

is the ring of finite adeles, which contains both Q and Ẑ. Notice that we are taking
this double coset procedure because of the ambiguity in A and B−1. To get the
identity coset would mean that A and B are the same. But they are in different
rings sitting inside of Afin. The intersection of Q and Ẑ in Afin is precisely Z, as
it turns out. Hence getting the identity coset means that q and q′ are equivalent
over Z. We conclude that really we want to be counting the number of such double
cosets.

There are now a few changes we would like to make. First off, let’s take the ring
of all adeles, not just the finite ones, A = Afin × R. But to keep things finite now
we will look at double cosets

Oq(Q)\Oq(A)/Oq(Ẑ × R).

The reason we look at all adeles is because A is naturally a topological ring via
the usual topology on R and the p-adic topologies. It turns out that A is locally
compact. Moreover Q obtains the discrete induced topology. All of this is to
say that Oq(A) is now a locally compact group which contains a discrete subgroup

Oq(Q) and an open compact subgroup Oq(Ẑ×R). But the theory of locally compact
groups tells us that we have a Haar measure (turns out here both left and right
invariant) µ. Now

Oq(Q)\Oq(A)
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inherits a measure and is acted on from the right by Oq(Ẑ × R which iteslf also
inherits a measure. So here’s what we might naively expect: the number of orbits
is

X =
µ(Oq(Q)\Oq(A))

µ(Oq(Ẑ × R)
.

But this is not true on the nose because the action is not free. In fact, it turns out
that the number of orbits is precisely given by the mass of q.

Remark 3. The measure µ is not defined up to a scalar, which is fine for us since
µ appears both in the numerator and the denominator.

Now define

SOq(R) = {A ∈ GLn(R) | q ◦A = q,detA = 1}.

Then it turns out that
µ(SOq(Q)\Oq(A))

µ(SOq(×̂R))
= 2kX.

Now notice that

SOq(A) = SOq(R)×
restr∏
p

SOq(Qp).

For SOq(R) write VR for the line of left-invariant top-degree differential forms on
SOq(R). Recall that SOq(R) is in fact an algebraic group over R that comes from Q
(the equations defining it only use integers). Working over Q one finds a subspace
VQ ⊂ VR of algebraic differential forms. This is a bit better because it’s now
ambiguous only up to scaling by rationals. Next let’s look at VQp

, the invariant
top-forms on the p-adic analytic Lie group SOq(Qp). As before inside this space we
have a one-dimensional space over Q which is just VQ. Hence VQ sits inside VR and
VQp . Now ω ∈ VQ determines measures µω,∞ and µω,p on SOq(R) and SOq(Qp).

Definition 4 (Tamagawa). The Tamagawa measure is

µTam = µω,∞ ×
∏
p

µω,p.

Two questions: convergence and well-definedness under choice of ω. For the
latter suppose that we multiply ω by −5. The measure on SOq(R) is multiplied
by 5. The measure on SOq(Qp) on the other hand shrinks by a factor of 5 (some
argument here about p-adic measure of −5). Hence everything cancels out. So now
consider the expression

µTam(SOq(Q)\SO(A))

µTam(SOq(×̂R))

We obtain the Tamagawa-Weil version of the mass fomrula

µTam(SOq(Q)\SOq(A)) = 2.

This is true for any q with at least 3 variables. Where does this number 2 come
from? It comes from the fact that SOq has a double cover Spinq. It turns out that

µTam

(
Spinq(Q)\ Spinq(A)

)
= 1.

Motivated by all of this, Weil made the following conjecture.
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Conjecture 5. Let G be a semisimple simple connected algebraic group over Q.
Then

µTam (G(Q)\G(A)) = 1.

The proofs (for various generalities) were given by Langlands, Lai, and Kottwitz.
The purpose of these lecture series is as follows. The second lecture will be about

the analog of Weil’s conjecture works in the case of function fields. In this case we
will be counting principal G-bundles over algebraic curves. We will reformulate
this into a statement about cohomology of a certain stack. In the third lecture we
will go back to characteristic zero and relate this story with factorization homology
via nonabelian Poincaré duality. Finally, in the fourth lecture, we’ll give notions of
how these ideas gives a proof of Weil’s conjecture for function fields.

Since we’ll have an exercise session later:

Exercise 6. Let H = {x+ iy | y > 0}. This is equipped with a metric of constant
curvature −1. The area form has a simple formula dxdy/y2. This upper half plane
is acted upon by SL2(Z). Compute the volume of the H/SL2(Z) in two ways. The
first is to just use calculus. The other way is to use Weil’s conjecture. Hint: take
G = SL2.
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2. June 11, 2018 – Kevin Costello

fill this in
Suppose now that M = Σ × R for Σ a Riemann surface. Then the space of

solutions to the equations of motion is

FlatG(Σ) = {flat G-bundles on Σ}
= Hom(π(Σ), G)/G.

where G is a complex semisimple group. The key point is that FlatG(Σ) is a
complex symplectic space (really a derived stack). Why is this? If we take a point
A ∈ FlatG(Σ) then

TAFlatG(Σ) = {Ã | F (A+ εÃ) = 0}/gauge.

But
F (A+ εÃ) = dAÃ

and the gauge transformations send Ã 7→ dAX for X ∈ Ω0(Σ, g). In other words,

TAFlatG(Σ) = H1(Σ, gA)

where gA is the adjoint bundle associated to flat bundle A. This a symplectic vector
space: given A′, A′′ ∈ TAFlatG(Σ),

ω(A′, A′′) =

∫
〈A′, A′′〉g

where 〈·, ·〉g is the Killing form. Why is it important that this moduli space is
symplectic? This probably goes back to Hamilton. If we have a variational elliptic
PDE on X × R (for X a manifold) then germs on X to solutions to the equations
of motion are always symplectic

Classical Chern-Simons theory on Σ × R is equal to the classical mechanical
system whose field is a map f : R→ FlatG(Σ) and whose action functional is∫

R
f∗θ

where dθ = ω. The operators of this system are functions O(FlatGΣ). They
symplectic form gives rise to a Poisson bracket. The quantum Chern-Simons
theory then should give rise to a deformation quantization O~(FlatG(Σ)), i.e.
a, b ∈ O~(FlatG(Σ)),

1

~
[a, b]

~→∞−−−−→ {a, b}.

Now we want to generalize Chern-Simons theory and obtain different symplectic
manifolds (that are known to experts). Let’s start with four dimensions. If M4 =
Σ1 ×Σ2 is the product of two Riemann surfaces and ω ∈ H0(Σ2,KΣ2) (with poles
allowed) then we consider A ∈ (Ω1(M)/ωΩ0(M)) ⊗ g as our gauge fields. The
action functional we take is

S(A) =

∫
M

ωCS(A).

Let’s try to repeat what we did for Chern-Simons theory. This 4d Chern-Simons
theory will be related to Yangians and quantum affine algebras Uq(ĝ). What are
the equations of motion? We compute

ω ∧ CS(A+ εÃ) = 〈Ã, ω ∧ F (A)〉
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whence the equations of motion are ω ∧ F (A) = 0. Now F (A) has components in
Ω2(Σ1)⊗̂Ω0(Σ2) and Ω1(Σ1)⊗̂Ω0(Σ2) (there are other components as well). The
equations of motions are that these two components vanish. Let’s try to understand
what this means more geometrically — it’s obviously some sort of flatness condition.
These equations mean that for all x ∈ Σ1, A|x×Σ2

is a holomorphic bundle on Σ2.
If x, y ∈ Σ1 the parallel transport over a path from x to y defines an isomorphism
of holomorphic bundles. This is because the second component vanishes. Moreover
for all z ∈ Σ2 the bundle on Σ1 × z is flat.

Let us in particular take Σ1 = R × S1 and Σ2 an elliptic curve. What is the
moduli of solutions to the equations of motion in this case? Since the cylinder
is connected (but not simply-connected) the moduli space is the set of holmorphic
bundles on E with an automorphism. This is actually a pretty famous hyperKähler
manifold, the space of periodic monopoles or multiplicative Higgs bundles. Notice
that it is important we are working with elliptic curves so that we have nonvanishing
one-forms. One computes the tangent space to be

TAM = H1
d̄(E, gA)⊕H0

d̄(E, gA).

coming from varying the connection and the isomorphism. The symplectic pairing
is

〈φ, ψ〉 =

∫
ω ∧ 〈φ, ψ〉g

at a point where the automorphism is the identity (otherwise it doesn’t split).
The next example is that of 5d Chern-Simons theory and is very similar to the

previous example. Here we take M5 = R ×X where X is a complex surface with
a holomorphic volume form ω. Here our gauge fields are

A ∈ Ω1(R)⊗̂Ω0(X)⊕ Ω0(R)⊗̂Ω0,1(X).

If t, z1, z2 are coordinates then

A = Atdt+ az̄1dz̄1 +Az̄2dz̄2

and

S(A) =

∫
M

ω ∧ CS(A).

We find that the equations of motion say that for all t ∈ R we have a holomorphic
bundle on X and that the parallel transport on R is an isomorphism of holomorphic
bundles. The symplectic manifold is BunG(X) the space of holomorphic bundles
on X. Mukai showed, in the 90’s, that because X has a holomorphic volume form,
BunG(X) is symplectic.

So far we’ve seen a few examples of action functionals and how they lead to
symplectic manifolds. Let’s see how they relate to quantum groups. Here is a
heuristic definition of a line operator in QFT: it is a function of fields that only
depends on their behavior along a line.

Example 7. For example in Chern-Simons theory given a representation R of gA
and a circle S1 ⊂M , we can define a Wilson line

trR holS1(A) =
∑
n

∫
∆n

trR(At1 ∧ · · · ∧Atn).

We claim that to give a line operator in any of these theories is to give a repre-
sentation of a quantum group.
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3. June 11, 2018 – Damien Calaque

See slides

4. June 12, 2018 – Jacob Lurie

Let’s recall the statement of Weil’s conjecture. More generally this statement
should be true for number fields. Recall that a number field is a finite extension of
Q.

Conjecture 8. Let G be a semisimple, simply connected, algebraic group over a
number field K. Then

µTam(G(k)\G(A)) = 1.

Here the adeles are the tensor of A over Q and K. Recall that a function field is
a finite extension of Fp(t) for p prime. We state the same conjecture about function
fields K.

Conjecture 9. Let G be a semisimple, simply connected, algebraic group over a
function field K. Then

µTam(G(k)\G(A)) = 1.

More generally we might think of K(X), for X an algebraic curve over Fq. Let’s
discuss how concepts in the context of Q carry over to those of function fields.
First of all, the prime numbers p correspond to close points x ∈ X. Meanwhile Fp
corresponds to κ(x), the residue field, which is a finite extension of Fq. Moreover
Zp corresponds to Ox, the completed local ring Ox ' κ(x)[[u]] (this isomorphism is
not canonical). The field of p-adic rationals has as its counterpart the local field
κx ' κ(x)((u)). It is sometimes also convenient to include R, which we think of
completion at a prime at ∞. There is nothing that corresponds to this on the
function field side. Last time we had A = R ×

∏restr
p Qp. For function fields we

have

A =

restr∏
x∈X

κx.

Just as before, A is a locally compact topological ring. Last time we were consider-
ing quadratic forms q/Q, which determined a group SOq. In the function field case
we will just think of any semisimple algebraic group K. Last time we considered
SOq(Q)\SOq(A). In this case we look at G(K)\G(A), which comes similarly with a
Tamagawa number. Moreover we had a refinement: quadratic forms over Z. In the
function field setting we will similarly have a group scheme G→ X, which is affine
smooth and has connected fibers (probably G is not great notation for this). There
are however some points of bad reduction, where the fibers are not semisimple.
This is analogous to the fact that a nondegenerate quadratic form over Q may be
degenerate over finitely many primes. The analog of SOq(Ẑ × R) is G(

∏
x∈X Ox),

which is a compact open subgroup of G(A). Last time we discussing a certain dou-

ble quotient SOq(Q)\SOq(A)/SOq(Ẑ ×R) which corresponded to quadratic forms
in the genus of q. This will correspond to

G(K)\G(A)/G(
∏
x∈X
Ox),
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which corresponds to principal G-bundles P → X. We now want a formulation of
the mass formula. ∑

G-bundles

1

|Aut(P )|
= qd

∏
x∈X

|κ(x)|dimG

G(κ(x)
.

Notice that the sum on the left is almost never finite — there is a convergence issue.
So really the same statement is that the left converges and the right converges, and
they converge to the same thing.

Recall the moduli stack of G-bundles BunG(X), which satisfies that maps Y →
BunG(X) correspond to principal G-bundles on X×Y . The reason we need to treat
this as a stack is so that we can really understand the automorphisms of principal
bundles, which appears in our formula above. Our goal is to compute the number
of points of BunG(X) (defined over Fq). Let’s look at something a little bit simpler
first. Let Z be a projective variety over Fq. A question that Weil was interested in
was how big is Z(Fq)? Notice that Z(Fq) ⊂ Z(F̄q). Consider the Frobenius map
φ : Z → Z, which in homogeneous coordinates (inside our projective space) is given
by raising all coordinates to the qth power. Notice that this is indeed a map back
to Z as the qth power acts as the identity on the coefficients of the polynomials
defining Z. Notice that Z(Fq) is the precisely the fixed points of φ. Weil had the
insight that one should be able to use some sort of fixed point formula to compute
the size of this set.

Heuristic:

|Z(Fq)| =
∑

(−1)i tr(φ | Hi(Z)) = tr(φ | H∗(Z)).

If we were working over C and φ had nondegenerate fixed points then this would just
be a result of Lefschetz. This heuristic, after Grothendieck, is a theorem, known as
the Grothendieck-Lefschetz theorem. The cohomology on the right is the étale or
`-adic cohomology.

We would like to apply this heuristic to our case BunG(X). Unfortunately this
is no longer a projective variety. However all we have to do is replace H∗ with
compactly supported cohomology H∗c . But what if we don’t like compactly support
cohomology and would like to stick with usual cohomology. Well suppose that Z
is smooth of dimension d. In this case, the theory of étale cohomology has some
version of Poincaré duality. Recall that this should be something like

Hi
c(Z) ' H2d−i(Z)∗.

Hence we obtain

|Z(Fq)| = qd tr(φ−1 | H∗(Z)).

The qd comes from the fact that Poincaré duality is not actually equivariant with
respect to the Frobenius. Usually the pairing is given by pairing then integration.
However the Frobenius is a map of degree qd so carries the fundamental class to qd

times the fundamental class. Let’s rewrite this a bit:

|Z(Fq)|
qd

= tr(φ−1 | H∗(Z)).

Notice that the fraction on the left we expect to be close to 1 (number of points in
Fq times the dimension of our variety). The higher cohomology groups are serving
as the corrections to this not being exactly 1.
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We now want to replace Z with BunG(X). This latter object is a smooth alge-
braic stack of dimension d. Some work needs to be done to show that the Lefschetz
trace formula holds for this stack, but it turns out that it does.

tr(φ−1 | H∗(BunG(X))) =
1

qd

∑ 1

|Aut(P )|

This was proved by Kai Behrend in the case when G has good reduction (and can
be generalized to our case). Now it turns out that one shows∏

x∈X

|κ(x)|dimG

|G(κ(x))|
=
∏
x∈X

tr(φ−1 | H∗(BunG({x}))).

One now might expect some cohomological equality of these quantities, which is
our new statement of Weil’s conjecture.

Well there is some intuition that

BunG(X) =

cont∏
x∈X

BunG({x})

that bundles on X are bundles on points that vary continuously (algebraically) in
some sense. Now if we knew some statement like this one might be able to use some
sort of Kunneth formula,

H∗BunG(X)) ∼=
cont⊗
x∈X

H∗(BunG({x})).

Now we might take the trace of the (inverse of the) Frobenius on each side,

tr(φ−1 | H∗BunG(X)) =
∏
x∈X

tr(φ−1 | H∗(BunG({x}))).

The rest of these lectures will deal with joint work with Dennis Gaitsgory that make
precise this sketch proof. We will make these ideas more precise. Can we make
sense of the Kunneth decomposition? What do we mean by this continuous tensor
product? This will be made using factorization homology for algebraic curves over
Fq.

Next lecture we will transition to topology, and explain a formula that is very
similar to the Kunneth decomposition. The finally in lecture 4 we will give a sketch
about how this adapts to the algebraic geometry.

5. June 12, 2018 – Kevin Costello

Today we will discuss factorization algebras coming from Chern-Simons theories
and the relation with quantum groups. Let’s think about 3d Chern-Simons for now.
Let M be a 3-manifold. Recall that the equations of motion cut out LocG(M).
Here’s a philosophy: every quantum field theory on M gives rise to a factorization
algebra on M . An open subset U is sent to the complex Obsq(U), which is a cochain

complex over R[[~]]. Modulo ~ we just obtain Obscl(U), which is just the functions
on the space of solutions to the equations of motion on U .

For Chern-Simons theory,

Obscl(U) = O(LocG(U)).
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For example, if we take M = Σ× R and U = Σ× (−ε, ε) then

Obscl(Σ× (−ε, ε)) = O(LocG(Σ)).

We expect that Obsq(Σ×(−ε, ε)) will be an E1-algebra, a deformation quantization
of LocG(Σ). Moreover, for the purposes of this lecture we will work perturbatively,

i.e. we will replace LocG(M) by its formal completion ˆLocG(M) at the trivial
bundle. The idea is that formal derived stacks is really much easier to work with.
Roughly speaking, formal derived stacks are the same thing as dg Lie algebras
(Jacob has an ICM address about this). In our case ˆLocG(M) just corresponds to
Ω∗(M)⊗ g and functions on it correspond to C∗(Ω∗(M)⊗ g).

We expect from 3d Chern-Simons theory that there is a factorization algebra on
M sending

U 7→ C∗~(Ω∗(U)⊗ g).

Damien explained that factorization algebras under certain assumptions are the
same as En-algebras. This assumption holds here: we will have a locally constant
factorization algebra whence we obtain an E3-algebra. This E3-algebra deforms
C∗(Ω∗(M)⊗ g) ' C∗(g). We want to relate this E3-algebra to quantum groups.

For 4d Chern-Simons theory, a quantization will give a factorization algebra on
R2 × C which sends

D1 ×D2 → C∗(Ω∗(D1)⊗̂Ω0,∗(D2)) ' C∗(Hol(D2)⊗ g)

If moreover we replace D2 by a formal disc, we obtain C∗(g[[z]]). In this case we
expect an E2-algebra, which quantizes C∗(g[[z]]).

In the 5d Chern-Simons case we expect an E1-algebra which quantizes C∗(g[[z1, z2]]).
We now turn to line operators. For 3d Chern-Simons theory with an E3 algebra

of observables C∞~ (g).

Definition 10. The category of line operators is PerfC∗~(g).

If you’re a physicist you might say that a line operator is what you get when you
change the QFT over a line. This suggests that line operators give constructible
factorization algebras. Line operators can end, so we also want pictures that look
like rays. The underlying cochain complex of the module that we get associated to
this ray is a module M over C~

∗ (g). What type of module is this (there are many
in the homotopy algebra world). It turns out it is only a left-module

C∗~(g)⊗M →M

(for some reason that I missed). So physics suggests that line operators in a 3d
TFT are an E2 braided monoidal category. Jacob shows in Higher Algebra that
perfect modules for an E3-algebra is an E2-category. Where does this E2-structure
come from? Given two different rays (in our three dimensional manifold), we can
collide the lines (or as Damien said collapse the interval between the lines). The
fact that there’s two dimensions is giving us the E2-structure.

There’s another place where one finds braided monoidal categories: representa-
tions of U~g. Recall that Rep(Ug) ' Perf(C∗g) sending R 7→ C∗(g, R).

Theorem 11 (Costello, Francis, Gwilliam). There is an equivalence of E2-categories

Perf(C∗~(g))→ Rep(U~(g))

possibly after a reparameterization ~ 7→ ~ + c~2 + · · · .
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Let’s now look at the 4d case. Quantizing 4d Chern-Simons theory gives rise to
an E2-algebra C∗~(g[[z]]) is an E1-category, which deforms representations of U(g[[z]]).
The Yangian Y~(g) is a Hopf algebra which deforms U(g[[z]]).

Theorem 12 (Costello, Costello-Witten-Yamazaki). There is an equivalence of
monoidal categories

Perf(C∗~(g[[z]]))
∼−→ Y~(g)−mod.

On both sides there is an extra structure that we haven’t used. The Yangian has
a universal R-matrix, and on the left we haven’t used the extra complex direction.

More explicitly, Y~(g)−mod has extra structure. If λ is in the formal disc then
there is a translation function Tλ on this category which quantizes z 7→ z + λ. If
λ is in the formal punctured disc, and V,W ∈ Y~(g)-mod, then there exists an
isomorphism known as the R-matrix,

R(λ) : V ⊗ TλW
∼−→ TλW ⊗ V.

Let’s see where this comes from in field theory. Given a factorization algebra on
R2 × C and a line defect at z = 0 and a line defect at z = λ, we can move them
past each other without touching (we are in 4 dimensions).

Theorem 13. These structures match each other.

Now let’s look at 5 dimensions. There is a technical caveat. Working on R×C2

we must have the C2 be noncommutative (and g = gln). In this case C∗~(gln[[z1, z2]])
is an E1-algebra

Theorem 14 (Costello, Yaping Yang, N Guang). There is an equivalence of cate-
gories

Perf(C∗~(gln[[z1, z2]]))
∼−→ Rep(U~gln[[z1, z2]])

where on the right we have the deformed double current algebra.

If you like the ddca is a rational limit of the affine Yangian and plays a role in geo-
metric representation theory. In this case one also should expect some extra struc-
ture, which should look something like the following. Denote C = Perf(C∗~(gln[[z]])),
which is just a category. For each V,W ∈ C and λ in the formal disc we should
get Tλ : C → C. For all λ in the formal punctured disc we can tensor V and TλW .
Hopefully one should be able to write this down more classically.

To summarize, 3d Chern-Simons yields an E2-category, 4d Chern-Simons yields
an E1 chiral category, and 5d Chern-Simons theory is a chiral chiral category.

How to compute these things explicitly? One thing we have been using implicitly
is the notion of Koszul duality. If V is a vector space, then the symmetric algebra
S∗V is Koszul dual to the exterior algebra Λ∗V ∗. If xi is a basis of V and εi of V ∗

then C[xi] is Koszul dual to C[εi] for |εi| = 1. One can make deformations to both
sides. For instance C[xi] can deform if we take

[xi, xj ] = (πkijxk)δ

for δ some parameter. This is dual to introducing a differential on the dual side

dεk = (πkijεiεj)δ.
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The πkij are structure constants of g. Then with a bit of care we conclude that Ug
is Koszul dual to C∗g. We want to then quantize

C∗(g[[z]]) U(g[[z]])

C∗~(g[[z]]) Y (g)

KD

KD

6. June 12, 2018 – Damien Calaque

Today we will discuss vertex models and En-algebras. We will start with two
conjectures of Kontsevich.

The first will be a bit vague: any sensical definition of quantum field theory
involves some infinite dimensional bundle of fields F → X.

Conjecture 15 (Conjecture A (Kontsevich)). Given a quantum field theory on
Rd which has translation and dilation symmetries, then translation invariant forms
with values in F obtains an action of Ed. In other words we get an Ed-algebra in
the category of complexes of R-vector spaces.

Remark 16. If A is an Ed-algebra in CpxR then A[d− 1] is equipped with an L∞-
algebra structure. Presumably the higher brackets in this structure are related to
renormalization and related combinatorial issues.

Remark 17. Since the statement of the conjecture there have been many contexts
in which this conjecture has been turned into a theorem. See papers of Costello,
Costello-Gwilliam, and in physics, Hollands, . . . In most of these results we have
similar statements for QFTs that are close (formally perturbed from) free theories.
If you wish, there is a deformation theoretic interpretation: pick a QFT and look
at the formal deformation problem of this theory. This deformation problem is
governed by a dg Lie algebra and moreover if we consider the deformations along
translation/dilation invariant theories then we get a deformation problem for En-
algebras.

The next conjecture is a discretized version of the above which has not been
published (but was given by Kontsevich in some talks). We will take, for clarity,
dimension d = 2. In particular we consider a infinite square lattice in R2 that is
oriented from left to right and bottom to top. Let H and V (for horizontal and
vertical) be two vector spaces. We interpret

H = k〈ei | i ∈ I〉 V = k〈fj | j ∈ J〉.

We have R(ei⊗fj) = Rklij ek⊗fl. Here Rklij is the probability to have a configuration
where clockwise from top we have ei, fl, ek, fj . We now play the following game. We
count the configurations in finite regions with these weights Rklij and with prescribed
boundary conditions. This is another way of saying that we are going to be doing
“state sums.”

We now define the space of boundary satates of a given region. Let U be bounded
open convex region in R2. We write ∂h+U for horizontal incoming boundary edges,
i.e. horizontal edges e such that e ∩ U 6= ∅ but the source s(e) /∈ U . Similarly we
have ∂v+U , ∂h−U , and ∂v−U . The space of boundary states is defined

W (U) = End(H⊗∂
h
+U ⊗ V ⊗∂

v
+U )
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since we have a canonical bijection ∂h,v+ U ' ∂h,v− U . The partition function, now is
just an element of W (U):

ZU : k →W (U).

given just by matrix multiplication at each lattice point in a certain order (left to
right and bottom to top). We think of k → W (U) as coming from the inclusion
∅ ↪→ U . What happens if instead we are looking at an inclusion U ′ ⊂ U? One
obtains a map

ZU ′,U : W (U ′)→W (U)

where we send an endomorphism A to A precomposed by the matrices R at each
lattice point in U not in U ′.

We now define

W (R2) = colim
U

W (U),

which has a natural action of Z2. For example W (U)(1,0) → W (U + (1, 0)). We
now come to the second conjecture.

Conjecture 18 (Upside-down renormalization (Kontsevich)). The complex giving
us group homology valued in W (R2),

C−∗(Z2,W (R2))

is acted on by E2.

Roughly speaking here are taking derived coinvariants.

Remark 19. Actually W can be turned into a (pre)factorization algebra.

Theorem 20 (Calaque-Lejay). Conjecture B is true.

Consider the (2,1)-category of discretized disks D2. Objects here are finite dis-
joint unions of disks in R2. 1-morphisms are generated by two things, inclusions
and translations (with some condition that I missed). There are 2-morphisms gen-
erated by recognizing that translating up then right is the same as translating right
then up. On this category there is an E2-monoidal structure. We use the fact (due
to Dunn and Lurie) that a E2-algebra is just an E1-algebra in E1-algebras. Indeed,
consider the two partial orders on objects A <h B if A is to the left of B and
A <v B if A is below B. Now we define

A⊗h B = A t (B + (m, 0))

where m is minimal such that A <h B + (m, 0). Similarly

A⊗v B = A t (B + (0, n)).

One checks that these are strict monoidal products. However they are not strictly
compatible. A consequence is that ho(D2) is braided monoidal. The braiding is
given by moving two blocks past each other (and then possibly retranslating).

Now let me give you a trick to construct En-algebras using En-monoidal functors.
Take C,D to be En-monoidal (∞, 1)-categories. Given an En-monoidal functor
F : C → D then the colimit of F is an En-algebra in D. The colimit can be
written as a left Kan extension along the functor C → ∗. It makes sense to do this
operadically i.e. for everything En-monoidal.
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Example 21. Take C = D2 and let D = Cpxk and any E2-monoidal functor
D2 → Cpxk. But the map D2 → ∗ factors through the category which has one
object and Z2 as automorphisms, i.e. BZ2. This functor forgets about the two-
cell and sends paths to the pair of integers telling us the overall translation. The
Kan extension along the functor D2 → BZ2 yields complexes which will be the
colimit over all U ’s of F (U). Further Kan extension to the point will compute the
coinvariants,

C−∗(Z2, colim
U

F (U)).

So now we just need to choose the functor F appropriately. But W defines a braided
monoidal functor

D2 → hoD2
W−→ Vect→ Cpxk

Hence we see that
C−∗(Z2,W (R2))

has the structure of an E2-algebra.

Let us conclude with a few remarks.

Remark 22. When n ≥ 3 then the En-algebra structure turns out to be an E∞-
algebra structure. This is because the map from the homotopy category of D2 is
symmetric monoidal and the colimit is taken over a symmetric monoidal functor.
It would be nice to see explicit models (say from statistical mechanics) that are E3

but not E∞.

Remark 23. Assume that H = V and R ∈ GL(V 2) satisfies the Yang-Baxter
equation. This tells us that we have certain commuting matrices. What does this
tell us about the E2-algebra structure?

Remark 24. There are other types of models where the interactions are not at the
vertices but on the faces. Is there something interesting to say for this class of
models?

7. June 13, 2018 – Lauren Bandklayder

Theorem 25 (Dold-Thom ’58). For a based space (X, ∗) and an abelian group
(A, e) then there are isomorphisms

π∗(Sym(X;A)) ∼= H̃∗(X;A).

The original proof roughly checks that π∗(Sym(−;A)) satisfies the Eilenberg-
Steenrod axioms. Our goal today is to outline a direct geometric proof.

Definition 26. For (X, ∗) and (A, e) as above, define the infinite symmetric prod-
uct of X with coefficients in A

Sym(X;A) = {(S, l) | ∗ ∈ S ⊂ X finite, l : (S − ∗)→ A}/ ∼
where the relation is given by declaring two configurations to be equivalent if they
differ by a point marked by e.

The topology on this space is such that essentially points can either move around
noninteracting, or they can collide, or they can get absorbed into the basepoint.

Two properties to remember about the infinite symmetric product is that (as a
functor from based spaces to based spaces) it is homotopy invariant and preserves
open embeddings.
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Example 27. If I is a finite set then there is a homeomorphism Sym(I+;A) ∼= AI .

Example 28. For the sphere Sn Dold-Thom implies that

Sym(Sn;A) ' K(A;n).

Let Mfldn be the category of n-manifolds with open ends and Diskn is the full
subcategory with objects tkRn. Consider now Disk∗/M be the full subcategory of

DiskM whose objects are embeddings tkRn ↪→M such that ∗ ⊂ im(e).
Let’s outline a three bullet point proof and then go back and elaborate.

(1) Identify

Sym(M ;A) ' hocolimDisk∗/M Sym(−;A);

(2) Move to the category Ch≥0;
(3) Show that the resulting chain complex is singular chains.

Theorem 29 (Dugger-Isaksen). For U = {Ui}I a complete cover of X then there
is an equivalence X ' hocolimUi. We say that a cover is complete if every finite
intersection of elements of this cover admits a cover by {Uj}J .

We want to show now that {Sym(U ;A)}U∈Disk∗/M is a complete cover of Sym(M ;A).
That it’s a cover is clear: use Hausdorffness of manifolds to construct disjoint opens
around each configuration of points. For completeness, I missed this argument.

Let’s now move to chain complexes.

Sym(M ;A) ' hocolimDisk∗/M Sym(−;A)

' hocolimDisk∗/M H̃0(−;A)

Now H̃0(−;A) : Top→ Top factors through the Dold-Kan equivalence Ch≥0 → sAb.
We want to pass the homotopy colimit to this level of chain complexes. Of course
the homotopy colimit passes through the geometric realization and it remains to
check that it commutes with the forgetful functor. If the forgetful functor were a
sifted colimit we would be done. It’s not unfortunately.

However we can use (homotopy) finality of

Disk∗/M → Disk∗/M

where the right is a quasicategorical refinement (inverting isotopy equivalences).
This result is proved by Ayala-Francis and Lurie. By finality it is enough to compute
homotopy colimits over this quasicategory, and now the result follows.

Finally

hocolimDisk∗/M H̃0(−;A) ' C∗(M ;A).

8. June 13, 2018 – Brian Williams

See slides

9. June 13, 2018 – Tian Lan

See slides

10. June 13, 2018 – Ricardo Campos

See slides
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11. June 14, 2018 – Jacob Lurie

Let Σ be an algebraic curve over C and let G be a nice group scheme over Σ.
Then we can talk about the moduli stack of algebraic G-bundles, BunG(Σ). We
would like to understand the cohomology of this moduli stack. For simplicity let
us take G to be constant, i.e. a complex semisimple Lie group. In this case we
have an analytification BunG(Σ)an, which we call the moduli stack of holomorphic
G-bundles. Recall that holomorphic G-bundles can be identified with smooth G-
bundles equipped with a ∂̄-operator. The space of such ∂̄-connections is contractible
whence BunG(Σ) is homotopy equivalent this moduli stack of smooth G-bundles
with ∂̄-operators.

Now let me remind you that when we have a group G the classifying space is
writtenBG = EG/G where EG is some contractible space with a free action. Recall
that BG classifies G-bundles. Once you’ve done the work in defining BunG(Σ)an it
turns out that

BunG(Σ)an ≈ Maps(Σ, BG).

Recall that π0 of the right classifies isomorphism classes of G-bundles.
Suppose G were a discrete abelian group. In that case π0 Maps(Σ, BG) is also

known as H1(Σ, G). Now by Poincaré duality we should have

H1(Σ, G) ∼= H1(Σ, G).

What we would like to talk about is the analog for this statement where G is no
longer required to be discrete abelian.

Now recall that if M is a compact oriented d-manifold then Poincaré duality tells
us

H∗(M ;A) ' Hd−∗(M ;A)

What would happen if we applied this to the simplest d-manifold, Rd? Well the
compact-supports version of Poincaré duality tells us the following: on the right
we have 0 except in degree 0 and A in degree 0. This tells us that the compactly
supported cohomology of Rd is zero away from degree d where it is A.

Now let’s suppose we had a nonabelian Poincaré duality for Rd. Let’s try to
prove it for all manifolds. Let U(M) be the category of open subsets of M . Fix
U ∈ U and notice (omitting A from the notation from now on) that C∗(−) and
C∗c (−) yield functors from U(M) to the category of chain complexes.

Proposition 30. These functors C∗(−) and C∗c (−) are homotopy cosheaves on M
with values in chain complexes.

Let’s not get into the details here, but recall that the idea of a (co)sheaf is that
the functor is determined on a bigger open by what it does to small opens inside of
it. For instance say U, V ⊂M . Then

C∗(U ∩ V ) C∗(U)

C∗(V ) C∗(U ∩ V )

is homotopy pushout square. Even if you’re not familiar with exactly what this
means, morally the point is that this square yields a familiar Mayer-Vietoris long
exact sequence. This is essentially the content of the proposition above.
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If we accept that these two functors are homotopy cosheaves then we can prove
that Poincaré duality holds for all manifolds. Let U0(M) be the open disks in M .
The proposition above implies that

hocolimU∈U0(M) C∗(U)
∼−→ C∗(M)

is a quasiisomorphism of chain complexes. Similarly

hocolimU∈U0(M) C
∗
c (U)

∼−→ C∗c (M).

Now we have

hocolimU∈U0(M) C∗(U) C∗(M)

hocolimU∈U0(M) C
∗
c (U) C∗c (M).

with all arrows quasi-isomorphisms and the vertical quasiisomorphism can be made
functorial (this is the data of an orientation.

Now let’s look at the nonabelian case. Recall that Hm(M,A) can be identified
with the homotopy classes of maps from M to K(A,m), where the latter is an
Eilenberg-Maclane space. In other words, cohomology is about mapping into these
Eilenberg-Maclane spaces. Nonabelian cohomology should be something where we
replace A in K(A,m) with a nonabliean group. Indeed if m = 1 then K(A, 1) is
actually just BA. Now let G be a nonabelian discrete group. We might define

H1(M,G) = [M,BG].

We might also define it as isomorphism classes of G-bundles on X. If M is con-
nected and we’ve chosen a basepoint then this is the same as group homomorphisms
π1(M)→ G up to conjugacy in G. However this is not general enough for our ap-
plications where we need to work with nondiscrete groups.

Let us therefore introduce a much more general notion of nonabelian cohomology.
Let X be any space. Then

H(M ;X) := [M,X].

This is some absurdly general notion one can always define. Let’s make a table of
analogies. First our coefficient systems: we have an abelian group A and a degree
m, which is replaced by X any space (which reduce to X = K(A,m)). Now the
cohomology Hm(M,A) is replaced by [M,X]. Similarly Hm

c (M ;A) corresponds
to (after fixing a basepoint in X) [M,X]c. This latter symbol is the homotopy
classes of maps which carry everything to the basepoint away from a compact set
in M (homotopies must satisfy the same thing). Now on the left we had C∗c (M ;A)
which is now replaced by the space Mapsc(M,X). But what about the analog of
C∗(M ;A)?

Let’s try to apply our proof above on abelian Poincaré duality. The first part
was some sort of local computation, M = Rd. Consider the compactly supported
maps Mapsc(Rd, X). But we’re doing homotopy theory now so we only care about
the homotopy type of this space whence we identify

Maps
c

(Rd, X) ' Maps((Dd, ∂Dd), (X, ∗)) ' ΩdX.

This is the analog of the local computation we did earlier. Now we want to globalize.
Consider the covariant functor (U ∈ U(M)) 7→ Mapsc(U,X). Is this a homotopy
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cosheaf? It turns out that it’s not! Suppose we have two open sets U, V ⊂ M .
Then we have

Mapsc(U ∩ V,X) Mapsc(U,X)

Mapsc(V,X) Mapsc(U ∪ V,X)

Is this a homotopy pushout? Well one consequence is that a compactly supported
map defined on U ∪ V would have to be completely defined on either U or V .
Why did it work in the abelian case and not here? Well here we have a diagram
of topological spaces. The essential content was that we had a Mayer-Vietoris
sequence

H∗U ⊕H∗V → H∗(U ∪ V )→ H∗−1(U ∩ V )

The requirement imposed in this topological setting is much stronger than it was
in the chain complex setting — the problem is that in the nonabelian case we can’t
add maps.

We can’t add maps in general, but if U and V are disjoint then Mapsc(U∪V,X) '
Mapsc(U,X)×Mapsc(V,X). We might now attempt to salvage the above paragraph
using this partially defined addition. Let’s suppose we could. The canonical map

hocolimU∈U0(M) Maps
c

(U,X)→ Maps
c

(M,X)

would be a homotopy equivalence. Unfortunately, it’s not generally a homotopy
equivalence. Let’s use this partial definition. Consider U1(M) which is the category
of finite disjoint unions of disks in M . Now instead we consider

hocolimU∈U1(M) Maps
c

(U,X)→ Maps
c

(M,x).

This is often a homotopy equivalence!

Theorem 31 (Nonabelian Poincaré duality). Let M be a manifold of dimension d
and (X, ∗) be (d− 1) connected. Then

hocolimU∈U1(M) Maps
c

(U,X)
∼−→ Maps

c
(M,x).

is an equivalence.

Example 32. Let X = K(A, d). In this case take π∗ of both sides. If M is
orientable then the homotopy colimit appeared in Lauren’s talk yesterday and is
the infinite symmetric product whose homotopy groups compute homology. On the
right we have by representability the compactly supported cohomology.

Remark 33. The construction (U ∈ U0(M)) → Mapsc(U,X) is the example of
a factorization algebra on M taking values in topological spaces. Notice that
Mapsc(U,X) ' ΩdX which is naturally an algebra over the Ed-operad. Say we
have a disjoint union U1 t U2. Then we have maps∏

i

Maps
c

(Ui, X) ' Maps
c

(U1 t U2, X)→ Maps
c

(U,X)

which are precisely giving this Ed-structure. Taking the homotopy colimit is com-
puting the factorization homology of this primordial factorization algebra.
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Why is this useful? Well Mapsc(M,X) is something that is potentially quite
complicated. This theorem is telling us that when X is sufficiently connected we
can write this space as the homotopy colimit of a particular diagram. The category
indexing this colimit has nothing to do with X and the image of the diagram
has nothing to do with M , so one is effectively separating out the complicated
interaction occuring in the mapping space. In the case when you’re just computing
something crude like an Euler characteristic it is often useful just to even know that
this diagram exists.

Note that the hypothesis of connectivity is satisfied when M = Σ a Riemann
surface (d = 2) and X = BG for G a complex semisimple Lie group. We were
interested in a certain trace in the case where we were over Fq. It turns out that
one can ignore the fine details of the above in this case. Of course, there is the
complication that we want to work over Fq and not C. It is not at all obvious how
we should pass from the above to the algebraic case. For instance, over a general
field in the Zariski topology we don’t really have things like open discs.

I want to close this lecture by formulating this theorem differently. Let M be a
manifold. Then define Ran(M) to be the set of nonempty finite subsets S ⊂ M .
Let’s describe a basis for this topology: write Ran(U1, . . . , Un) to be the set of
nonempty finite subsets S ⊂M , with S ⊂ ∪Ui with each S ∩ Ui 6= ∅ where the Ui
are pairwise disjoint open sets. In fact we still get a basis if we take the Ui to be
pairwise disjoint connected open sets. We call such open sets “special open sets”
in Ran(M). We define a functor F from the special open sets in Ran(M) to Spaces
sending

Ran(U1, . . . , Un) 7→ Maps
c

(U1 ∩ · · · ∩ Un, X).

Theorem 34 (Nonabelian Poincaré duality version 2). F is a homotopy cosheaf
on Ran(M).

Assume that M is connected. Then

hocolimF(Ran(U1, . . . , Un))
∼−→ F(Ran(M))

where the homotopy colimt is over pairwise disjoint connected open sets. It is
relatively easy to see that these two statements of the theorem are equivalent. The
point, however, is that this second statement will be easier to apply in the algebraic
geometric setting.

12. June 14, 2018 – Kevin Costello

Last time we were talking about Koszul duality and quantum groups. The classic
instance of duality is

C∗(g[[z]]) ⇐⇒ U(g[[z]]).

We claimed that the deformations coming from 4d Chern-Simons theory are related
in the same way

C∗~(g[[z]]) ⇐⇒ Y (g[[z]]) = U~(g[[z]]).

Similarly for the 5d theory,

C∗~(gln[[z1, z2]]) ⇐⇒ U~(gln[[z1, z2]]).

Before we get to the commutation relations, etc. let’s talk a bit about Koszul
duality.
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Let V be a vector space with basis xi. Then we have Koszul duality between

S∗B ⇐⇒ Λ∗V ∗

i.e. C[xi] ⇐⇒ C[εi] where εi is a basis for V ∗. One feature of Koszul duality is
that Hochschild cohomology is isomorphic in a canonical way. This tells us that de-
formations of C[xi] that preserve the maximal ideal generated by the xi correspond
to deformations of C[εi] as an A∞-algebra. Recall that first order deformations of
a commutative algebra to noncommutative are given by Poisson brackets.

Suppose we introduce a Poisson bracket {xi, xj} = πij . This is not allowed
because it does not preserve the ideal. Something that would preserve the ideal
would be {xi, xj} = π∗ijxk. This would correspond to introducing a differential on

the other side dεk = πkijε
iεj . Next suppose we have {xi, xj} = πklijxkxl corresponds

to deforming the multiplication on the right, m2(εk, εl) = πkij(εi, εj). Similarly

{xi, xj} = πklmij xkxlxm corresponds to m3(εk, εl, εm) = πklmij εiεj . Let’s look at the

very first Poisson bracket. Then πkij are structure constants of a Lie algebra Sym∗ g.
We are deforming S∗g→ Ug. Dually Λ∗g∗ → C∗g.

Let’s now look at what the commutators look like. Fix g = gln and a basis
Eij of elementary matrices. Then Y~(gln) is generated by Eijz

n with commutation
relations

[Eijz
n, Ekl z

m] = δilE
k
j z

n+m − δkjEilzn+m +O(~2).

It turns out that Eij , E
i
jz, z

n id generate the algebra. It suffices to check, then, what
the commutation relations of these generators are. The formula is the following.
The [Eij ,−] always acts by the adjoint representation. The interesting one is

[Eijz, E
k
l z] = usual commutator + ~2(EimE

m
l E

k
j − EkmEmj Eil ).

Now what happens in what arises in the 5d Chern-Simons theory where we have
U(gln[[z1, z2]]). Modulo ~, this is generated by Eijz

n
1 z

m
2 which satisfiy

[Eijz
n
1 z

m
2 , E

k
l z

r
1z
s
2] = Eil δ

k
j z
n+1
1 zm+2

2 +O(~).

Everything is quite similar to before — I only need to give you one new commutator

[Eijz1, e
k
l z2] = usual commutator + ~EilEkj .

So what happens on the Koszul dual side? Well C∗(g[[z]]) is generated by linear
functionals sending X ∈ gln[[z]] 7→ tr(Eij∂

nX)(0). In the Yangian the quantum
correction took 2 generators and spit out something with 3 generators. Here on the
Koszul dual side we’re going to take 3 generators and spit out 2 generators, given
by an m3. In C∗~(g[[z]]) we should have

m3(Eij , E
k
l , E

r
s ) = δis(E

k
j ∂)(Erl ∂) + permutations.

Similarly in C∗~(gln[[z1, z2]]) we must have a new m2. The formula is

m2(Eij , E
k
l ) = (Eil∂1)(Ekj ∂2) + (Ekj ∂1)(Eil∂2)

where Eij∂
n
1 ∂

m
2 is a basis for dual of gln[[z1, z2]]. One expects to obtain these

formulas by studying factorization algebras in the field theories we were discussing
in the previous lectures. It turns out that in the 3d case there aren’t any interesting
deformations arising in this way (this can be done by looking at the degree 2
Hochschild cohomology).

How to compute? The 4d version is a bit tricky to compute with it turns out,
so let’s look at the 5d version. We’ll use a Feynman diagram formula for the first
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order deformation of C∗(g[[z1, z2]]). To understand this we’ll have to say a little
bit about how Feynman diagrams work in this theory. The first thing we need to
describe is the propogator. Fix a 2-form P0 ∈ Ω̄∗(R×C2)/〈dz1, dz2〉 (here we might
be taking distributional coefficients) such that

dz1dz2dP0 = δ0.

Let c = Eij ⊗Eij ∈ gln⊗ gln be the quadratic Casimir. Let π : (R×C2)2 → R×C2

sending (v, v′) 7→ (v − v′). Write

P = π∗P0 ⊗ c ∈ Ω∗(R× C2 × R× C2)/〈dzi, dz′i〉 ⊗ gln ⊗ gln

Here are the Feynman rules for this theory. Given a graph, at external lines we
place a field α ∈ Ω∗(R×C2)/〈dz1〉⊗gln[i] and at vertices place

∫
R×C2 tr(α1α2α3)dz1dz2.

On edges we place a propogator. These are the rules for when we’re computing say
a partition function. What about when we insert observables? We have certain
observables

α 7→ tr(Eij∂
k
1∂

l
2α)(0).

These observables at the classical level are quasi-isomorphic to C∗(gln[[z1, z2]])
These are the one-cochains which generate. So what we need to understand how
commutators deform when we quantize. Let Oij(ε, z1, z2) be the observable sending

α 7→ tr(Eijα)(ε, z1, z2).

We have observables Oij(ε, z1, z2) and Okl (0, 0, 0). What is their product in the
factorization algebra? We need to compute

lim
ε→0+

Oij(ε, 0, 0)Okl (0, 0, 0)− lim
ε→0−

Oij(ε, 0, 0)Okl (0, 0, 0).

Here is the formula, to order ~, for

(Oij(ε, 0, 0) · Okl (0, 0, 0))(α)

that we represent diagrammatically. diagram here It turns out that only the follow-
ing diagram contributes, diagram here What we need to show is that this diagram
contributes precisely the deformation we saw above. There is a Lie algebra fac-
tor and an analytic factor coming from the Feynman rules. The analytic factor
amounts to showing that∫

v,v′∈R×C2

P0(v − (ε, 0, 0))α(v)α(v′)P0(v − v′)P0(v′)dz1dz2dz
′
1dz
′
2

looks like
sign(ε)∂z1α∂z2α+ continuous.

In the Yangian case the m3 operation is computed by the diagram insert diagram.
It’s pretty tricky to get the factors of 2 right and this was computed by Costello,
Witten, Yamazaki.

13. June 15, 2018 – Jacob Lurie

Recall that on Tuesday we translated Weil’s conjecture for functional fields to
a problem about computing the cohomology of the stack of principal G-bundles.
Our goal is the following: let X be an algebraic curve and G → X be a group
scheme and BunG(X) be the stack of G-bundles on X. We would like to use the
topology/cohomology of this stack. Last time we discussed how to get ahold of the
homotopy type of BunG(X), at least in the complex analytic setting.
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Over C, let Ran(X) be the set of nonempty finite subsets S ⊂ X. We defined a
(homotopy) cosheaf F of spaces on Ran(X) such that

F(Ran(X)) = Maps(X,BG) ≈ BunG(X).

Moreover we had a local statement that

F(Ran(U1, . . . , Un)) = Maps
c

(U1 t · · · t Un, BG) ≈
n∏
i=1

Ω2BG.

How do we think about it? We are asking, roughly, for G-bundles on X equipped
with a trivialization outside of the Ui. If we were to take a certain limit we would
obtain G-bundles on X equipped with a trivialization outside n points.

Now over any field we introduce RanG(X), which classifies triples (P, S, γ) where
P → X is a principal G-bundle, S ⊂ X is a finite set, and γ is a trivialization of P
on the complement of S. Recall that BunG(X) is not a variety but a stack. This
means that I have to probe it by maps Y → BunG(X) from a variety, which is
defined to be the G-bundles on Y . So for Ran(X) we define the maps Y → Ran(X)
to associate to Y the set of nonempty finite subset S of Y . RanG(X) is defined
similarly, and in fact maps to Ran(X) and BunG(X).

We now state an algebraic geometric version of NPD.

Theorem 35 (Nonabelian Poincaré duality). The map RanG(X) → BunG(X)
induces an isomorphism on étale cohomology.

This result allows us to get the foot in the door for our proof, so let’s discuss it
briefly. Let us show that the fibers are contractible. Let’s consider the fiber above
the trivial bundle.

Rat(X,G) RanG(X)

∗ BunG(X)

Here the fiber is the space of rational maps from X to G, which is reasonable
because we are simply choosing another trivialization almost everywhere on X.

Example 36. Consider G = GL1 = Gm. This is not the type of group we’re
considering for Weil’s conjecture. But of course nonabelian Poincaré duality holds
in this case. We are trying to understand rational maps from our algebraic curve to
GL1 = A− {0} ⊂ A. Rational maps into A are pretty easy to understand, roughly
just meromorphic functions K(X), which is an infinite-dimensional affine space.
This space oughta be contractible as it is affine. But every rational map from X
into A1 − {0} determines a rational map X → A1 in the obvious way. However,
this does not work if the entire map is zero. Hence Rat(X,GL1) = K(X) − {0}
but an infinite dimensional vector space with a point removed is contractible (just
as in usual topology).

Now let’s do a bit of a harder case. Another example, which again is not quite
the kind of example that we’re interested in, is the constant group scheme GLn.

Example 37. We think of G = GLn ⊂Mn,n. Then Rat(X,Mn,n) = Mn,n(K(X)).
Now Rat(X,GLn) ⊂ Mn,n(K(X)) but now we’re interested in those maps where
the determinant does not vanish identically. How do we know that we get something
contractible? It’s hard to say when we’re working with these infinite-dimensional
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spaces, so let’s try to approximate with finite-dimensional spaces. If we fix a divisor
D ⊂ XS we can consider Mn,n(Γ(X,O(D)) where the entries are global sections
of O(D) (allowed to have poles only along D). And indeed by Riemann-Roch this
space has approximately dimension n2 deg(D) (we’re really only interested in how
this grows with the divisor D). Given such a matrix we can take the determinant to
obtain a section Γ(X,O(nD)). This is a nonlinear map between spaces of dimension
roughly n2 deg(D) to ndeg(D). We are interested in taking our divisor to be bigger
and bigger (to be the complement of a finite set). But in the limit the codimension
is going to be larger and larger. The intuition now is that removing a very large
codimension space will not change the contractibility.

Our goal is now to move to Fq and understand

tr(φ−1 | H∗BunG(X)).

By virtue of what we just said this is the same as the cohomology of RanG(X).
We want to compute the cohomology of this Ran space by some sort of Leray-Serre
spectral sequence,

H∗(RanG(X);Q
`
) ' H∗(Ran(X), Rπ∗Q`).

Let us denote

A := Rπ∗Q`.

So really we wish to understand

tr(φ−1 | H∗(Ran(X),A)).

We need to understand the fibers of the map π. Fix a point in the Ran space.
Recall that this is a finite set of points of X, S = {x1, . . . , xn}. The fiber should
be the bundles equipped with trivializations away from these points. However we
could take formal discs near our points and equip it with trivializations there. The
trivializations won’t agree on the punctured formal discs; they will disagree by the
completed local ring with a coordinate inverted upto our choice of trivialization
(which is the data of G evaluated at the completed local ring):

RanG(X)×Ran(X) {S} =
∏
x∈S

G(Kx)/G(Ox) =:
∏
x∈S

GrG,x .

This is what people call the affine Grassmannian. Notice that everything here is
living as functors on commutative rings. One can show that this affine Grassman-
nian is a projective ind-scheme, i.e. it can be written as a direct limit of closed
embeddings of projective schemes. It’s kind of like a projective algebraic variety
but has infinite dimension.

Now what can we say about A? What if we were to take the stalk at S? At the
risk of being a bit confusing write

S : ∗ → Ran(X)

and consider S∗A which is the stalk, a chain complex. We find

H∗(S∗A) = H∗(
∏
x∈S

GrG,x) ≈ ⊗x∈SH∗(GrG,X).

This A is an example of a factorizable sheaf, which levels in the world of `-adic
sheaves. It has the feature that the stalk at a finite set can be written as a tensor
product of things depending only on each point.
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What we described last Tuesday was the Grothendieck-Lefschetz trace formula
when we were in the context of a constant sheaf. We now need a slightly more
general context. Let Y be a variety over Fq and let F be some kind of (`-adic)
sheaf on Y .

Theorem 38 (Grothendieck-Lefschetz trace formula). The trace

tr(φ | H∗c (Y,F)) =
∑

x∈Y (Fq)

tr(φ | x∗F)

One might now like to apply this to the Ran space. This isn’t exactly right,
however. Here there’s a Frobenius instead of the inverse and moreover we’re taking
compactly supported cohomology. So we apply the Verdier dual of Grothendieck-
Lefschetz

tr(φ−1 | H∗(Y,F)) =
∑

x∈Y (Fq)

tr(φ−1 | x!F)

where x! is the costalk. Roughly speaking what we would like to do is apply this
dual form to the case when Y = Ran(X).

Question: can we apply the dual of the Grothendieck-Lefschetz trace formula
when Y = Ran(X) and F = A. If so, what are the costalks of A?

As you might guess, the answer is no. The reason is that the costalks are all
zero. So what goes wrong? This Ran space is not a variety over even an ind-
scheme, but ignoring this for the moment we want to just emphasize that it is
infinite dimensional. However we can write

Ran(X) = ∪n Ran(X)≤n,

which is the space of finite subsets of X with fewer than n + 1 elements. Really
the Grothendieck-Lefschetz trace formula only tells you about sheaves living on
finite-dimensional spaces. A little bit of wiggle room you might find is that if
our sheaf is only supported on a finite-dimensional subspace, we could just apply
the formula there. Unfortunately this isn’t true because of the computation of
H∗(S∗A). Here’s a workaround. Replace A by a “reduced” variant Ared. This
variant has the property that

H∗(S∗Ared) = ⊗x∈SH∗red(GrG,x

and

H∗(Ran(X),Ared) ' H∗red(BunG(X)).

It’s still supported in infinite dimensions, but if you’re interested in a particular
cohomological degree, the support is finite-dimensional. Here’s teh first place that
simply connectedness of G comes into play. The affine grassmannians are thus
connected whence the cohomologies in the equations above only have support in
degrees ≥ 2|S| as it turns out. As a result one is able to apply Grothendieck-
Lefschetz.

We obtain:

tr(φ−1 | H∗(Ran(X);Ared)) =
∑
S⊂X

tr(φ−1 | S!Ared)

where we’re summing over nonempty finite subsets closed points. Now the left is

tr(φ−1 | H∗red(BunG(X)))
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and the right, using a factorizability property,∑
S 6=∅

∏
x∈S

tr(φ−1 | x!A)

If we add 1 to both sides the reduced on the cohomology vanishes and the nonempty
condition on the right vanishes. Now

tr(φ−1 | H∗(BunG(X))) =
∏
x∈X

(
1 + tr(φ−1 | x!Ared

)
.

It is this type of Euler product expansion that we have been after. Weil’s conjecture
is slightly different but hopefully you can appreciate already that we’ve used a local-
to-global principle.

Let me close by saying how we analyze these costalks x!Ared. To do this let us
return to the setting of topology. This Ared is an example of a factorization algebra
over X. And at least over C this is a local system of nonunital E2-algebras (these
are coming from taking stalks and dualizing them). Indeed:

H∗(x∗ARed) = H∗red(GrG,x) = H∗red(Ω2BG)

or more precisely

x∗Ared ≈ C∗red(Ω2BG).

In the theory of E2-algebras there is a theory of Koszul duality, which is something
we can apply in this particular case. Koszul duality for nonunital E2-algebras
corresponds, thinking of them as factorizable sheaves, to Verdier duality on Ran(X).
We are interested in looking at costalks, which is Verdier dual to taking stalks.
Hence we need to take the Koszul dual of x∗Ared. In the setting of topology Koszul
duality tells us that

Cred
∗ (Ω2BG)

KD−−→ C∗red(BG).

Hence we should have

x!ARed = H∗red(BGx).

So once we understand this Koszul duality in algebraic geometry we obtain∏
x∈X

(1 + tr(φ−1 | x!Ared)) =
∏
x∈X

tr(φ−1 | H∗(BGx)).

14. June 15, 2018 – Kevin Costello

15. June 18, 2018 – Ezra Getzler

I want to kick things off by telling you what a category of a fibrant objects is.
The typical example is that of the fibrant objects in a closed model category less
than a particular size.

Let V be a small category and W ⊂ V be a subcategory of weak equivalences.
Every isomorphism in V is required to be in W, and for any diagram

X
f−→ Y

g−→ Z

if any two of the three morphisms (the third being the composition) are weak
equivalences then the third is as well.

The typical example of weak equivalences is that of weak homotopy equivalences
of topological spaces (here we are reflecting the isomorphisms in sets/groups/abelian
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groups). Dwyer and Kan showed that given such a subcategory of weak equiva-
lence one can construct a simplicial localization where they are inverted — this is,
roughly, what homotopy theory is about.

Let V• → V be a simplicial resolution of our category. The objects of Vn are
just the objects of V for n ≥ 0. Moreover Vn will be a free category for n ≥ 0
(iteratively). This is a standard construction which you can look up.

Let’s recall some simplicial basics. We take ∆ to be the category of finite non-
empty totally ordered sets. We use the finite ordinals [n] to obtain a small category.
The morphisms are just order-preserving functions. Notice that we may identify
[n] 7→ ∆n, where ∆n is the convex hull of the unit vectors in Rn+1. A covari-
ant functor ∆ → V is called a cosimplicial object in X•. On the other hand, a
contravariant functor ∆op → V is called a simplicial object X•.

Anyway, the vertices of Vn are words in the morphisms. For instance V0 is
the free category generated by V. Now we can consider the simplicial localization
V•[W−1] =W−1

• V•. Here we’ve taken a resolution ofW as well. This is a simplicial
category but all bets are off — it’s very obscure what the properties are. The whole
subject of categories of fibrant objects is to get our hands on this object.

One might ask whether every morphism of V that goes to an isomorphism of
W−1V a weak equivalence? This is some sort of saturation property, which was
studied by (Ezra forgets), and they found that there is a simple strengthening of
the axioms, the 2-out-of-6 axiom, which yields the answer yes. The axiom says that
if given

W
f−→ X

g−→ Y
h−→ Z

and gf and hg are in W then f, g, h are in W. Check how this works in the case of
spaces and weak equivalences.

Our goal now is to find a much more understandable realization of the simplicial
localization. In particular we will obtain a fibrant resolution of categories! In fact
it will be an∞-category. To introduce categories of fibrant objects we need discuss
fibrations. Verdier introduced, in SGA4, the notion of a carrable morphism, which
is a morphism that can be pulled back (since we’re in Canada it’s probably ok to use
this word). Fix F ⊂ V a subcategory and assume that all pullbacks of morphisms
of F exist and are in F . Moreover we assume that there exists a terminal object e.
We require also that all isomorphisms are fibrations. So far this structure is called
a category of fibrations.

Now a category of fibrant objects is a category with weak equivalences and
simultaneously a category of fibrations, satisfying some extra properties. We call
morphisms which are both weak equivalences and fibrations trivial fibrations. These
were invented by Ken Brown, who called them acyclic fibrations. The first axiom is
that every object is fibrant, i.e. the unique map to the terminal object is a fibration.
Next we ask that the pullback of a trivial fibration is again a trivial fibration. Finally
we ask that every morphism may be factored into a weak equivalence followed by
a fibration.

These axioms may seem a bit like an abstract painting where the logic is not
so clear, but somehow this structure pops up all over math, and you can prove
theorems about them!

What does the simplicial localization of a CFO look like? The vertices

V[W−1](X,Y )0.
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will be “generalized morphisms”. A morphism from X → Y is a diagram

X
∼←− P −→ Y.

where the first arrow is a trivial fibration. This has been known forever. Just a few
years ago a student at Bonn, Szumilo extended this to a quasicategory (of frames).

Now recall that the nerve of a category is the simplicial set NC given

NnC = Fun([n], C),

which gives us a fully faithful embedding of small categories into simplicial sets.
Now N•V•[W−1] will be a quasicategory whose zero simplices will be objects of V
and whose one-simplices will be diagrams X ← P → Y as above. The two-simplices
will look like fill in arrows

X1

X01 X012 X12

X0 X02 X2

where the acyclic fibrations are those where the face contains the initial vertex.
Recall we have a simplicial set ∆n defined by

∆n
k = ∆([k], [n]).

Inside here we have the ith face

∂i∆
n ⊂ ∆n,

which has all the faces that don’t include the vertex i. We obtain this way two
important simplicial sets, the boundary

∂∆n = ∪0≤i≤n∂i∆
n

and the horn, for 0 ≤ i ≤ n

Λni ∆n = ∪j 6=i∂j∆n.

Definition 39. A fibration of simplicial sets f : X → Y is a map f for which the
map

Xn = Hom(∆n, X)→ Hom(∆n
i , X)×Hom(Λn

i ,Y ) Yn.

is surjective for all n < 0 and 0 ≤ i ≤ n. A Kan complex is a simplicial set for
which X → e is a fibration.

Being a Kan complex is some sort of nonabelian analog of being a chain complex.
It turns out that a category C is a groupoid if and only if NC is a Kan complex.

Example 40. Finite Kan complexes are an example of a CFO, where by finite we
mean degreewise finite sets of simplices. Make this category small in your favorite
way.

Lemma 41 (Brown’s lemma). The weak equivalences in a category of fibrant objects
factors into a section of a trivial fibration followed by a trivial fibration.
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Hence the trivial fibrations of Kan complexes for which

Xn → Hom(∂∆n, X)×Hom(∂∆n,Y ) Yn

is surjective, with n ≥ 0. For n = 0 we find that X0 → Y0 is surjective. Work
out what you get for n = 1. The idea is that this allows us to access the weak
equivalences combinatorially via the trivial fibrations which are often easier to work
with.

16. June 18, 2018 – Chris Brav

Let me give a brief plan.

(1) DG categories as noncommutative spaces
(2) derived algebraic geometry, moduli space of objects
(3) orientations/calabi-yau structures on noncommutative spaces
(4) shifted symplectic structures on moduli spaces

Throughout we will fix a field k. For now it can be any field, but later it should
be characteristic zero. Moreover everything will be implicitly derived.

Let’s start with some motivation.

Example 42. Let X be a smooth variety (the smoothness is not crucial). On
such a space we obtain a category QCoh(X), which is a differential graded category
(there will be hom-complexes instead of hom-sets). The objects are complexes
of OX -modules with quasicoherent cohomology, up to quasi-isomorphisms. The
morphisms are Hom∗(F,G) (maps of various degrees) over k whose cohomology
computes ext-groups. This is a convenient category to work in as most operations
land us back in here.

There are examples of X 6∼= Y for which there is an equivalence of dg categories
QCoh(X) ' QCoh(Y ). The most well-known example is due to Mukai: principally
polarized abelian varieties and their duals. It is important that this equivalence
does not preserve the tensor product. In other words, we’re thinking of these
categories as noncommutative spaces instead of commutative, where we can take
tensor products. But the point is that you can’t recover a commutative space from
QCoh(X) but you can remember certain invariants.

For example, for certain dg categories one can compute Hochschild homology.
There is a theorem of Hochschild-Kostant-Rosenberg for which

HH∗(QCoh(X)) ' Γ(X,⊕ΩpX [p]) ' Γ(LX,OLX)

(remember we are dropping all derived symbols). However it’s hard to pick out
certain degrees, can only really recover differences of degrees. This is because we
forgot about ⊗. Another example we can pick up directly from this dg category is
algebraic K-theory, though this is much finer than what we will be discussing.

The next example is more homotopical. Recall that dg categories can even be
defined as modules for the Eilenberg-Maclane spectrum.

Example 43. Let X be a nice topological space. Consider Loc(X), which can be
defined as

Loc(X) = Fun(X,Vectk),

where everything in sight is∞-categorical. More concretely, if X is connected with
basepoint the Fun(X,Vectk) ' C∗(ΩX)−mod. There is also a tensor product here
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but we will forget it for our noncommutative purposes. Chris’ favorite local system
is the constant local system kx ∈ Loc(X). We can ask what the hom-complex is

Hom∗(kX , kX) = C∗(X, kX).

This is an example of an invariant that is picked up. Another thing we could do is
consider

HH∗(Loc(X)) ' C∗(LX),

which is a theorem of Goodwillie-Jones. It is interesting to note that there is an
S1-action on each side and that this equivalence is S1-equivariant.

The next is very general, which includes the above two in some sense.

Example 44. Let R be a dg algebra. Consider the category ModR of dg modules.
Then HH∗(ModR) carries an S1 action. There is no ⊗ of modules and no sort of
X×X, but HH∗ plays the role of functions on the loop space with the loop rotation.
Alternatively we can think of the de Rham complex with a funny grading..

A dg category A has some set (maybe collection) of objects, and has complex of
morphisms

A(x, y) = HomA(x, y)

with a composition
A(y, z)⊗k A(x, y)→ A(x, z)

that is a map of chain complexes and is associative and unital (the unit needs to
be closed under the differential).

Really we want to work with big dg categories, so we will try to use colimits as
much as possible, in stark contrast to Ezra’s lecture. These big dg categories are
going to be (co)complete, stable, and presentable. Presentable is a techincal condi-
tion that says there is a set of small objects and everything else can be built from
sufficiently small filtered colimits. For example one might try to understand a vec-
tor space by understanding its poset of finite dimensional subspaces. So presentable
is really a technical condition. Stable is more intuitive. Since we are (co)complete
we have an initial and final object. Stable means:

• that the map ∅→ ∗ is an equivalence
• Consider the loop space

ΩX ∗

∗ X

and the suspension

X ∗

∗ ΣX

which are always adjoint. We require that these be inverse to each other.

In homological algebra stability is very easy: Σ = [1] and Ω = [−1]. This notation
is independent of homological or cohomological grading. From now on dg categories
will be big dg categories unless otherwise stated.

Now consider dgCatcont, which will be the ∞-category of (big) dg categories
with continuous (colimit-preserving) dg functors between them. Sometimes we will
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actually use a 2-categorical variant. dgCatcont is a nice algebraic world to work in
as it is symmetric monoidal and there is an internal hom Fun. The tensor product
C ⊗ D → E is similar to what we’re used to in algebra. In particular such functors
are in bijection with bilinear and continuous in each variable. The unit for this
tensor product is just Vectk. We say that a dg category C is dualizable if there
exist C∨ and pairings and copairings

Vect
co−→ C∨ ⊗ C C ⊗ C∨ ev−→ Vect

such that

C idC ⊗co−−−−−→ C ⊗ C∨ ⊗ C ev⊗idC−−−−→ C ∼ idC

and similarly for C∨.

Exercise 45. any big dg category D there is an equivalence

C∨ ⊗D ∼ Fun(C,D).

If D = Vect then C∨ ' Fun(C,Vect).

We’ll skip the algebro-geometric example in the interest of time since it’s similar
to the topological example.

Example 46. Let X be a nice topological space. We claim that Loc(X) is self-dual.
The essential fact that makes this work is a K unneth formula for local systems.
Suppose we have X,Y nice topological spaces. There is a natural functor

Loc(X)⊗ Loc(Y )→ Loc(X × Y )

sending E,F 7→ E � F = p∗XE ⊗ p∗F , at least for small generators. Then ex-
tend by colimits. There is some lemma says that when you have a functor that
induces isomorphisms on homs and everything is built from colimits then you get
an equivalence overall. It’s like checking isomorphisms of vector spaces by looking
at a basis.

We now define the pairings and copairings. Note that Loc(∗) = Vect. Now the
copairing is given

coX : Loc(∗) p∗−→ Loc(X)
∆!

−→ Loc(X ×X) ' Loc(X)⊗ Loc(X)

where ∆! is roughly an induction of representations. The evaluation or pairing goes
the other way,

evX : Loc(X)⊗ Loc(X) ' Loc(X ×X)
∆∗−−→ Loc(X)

p!−→ Loc(∗),
where ∆∗ is roughly a restriction of representations.

Let’s now turn to Hochschild homology of dg categories. Suppose C is dualizable.
Then we define

HH∗(C) := tr(idC).

Let’s unpack what this means. Let F : C → C be an endofunctor of C (recall that
it preserves colimits). We write

tr(F ) : Vect
co−→ C∨ ⊗ C idC ⊗F−−−−−→ C∨ ⊗ C ' C ⊗ C∨ ev−→ Vect.

Check that for vector spaces (choose bases) this recovers the familiar trace. This is
a functor: since Vect is built by colimits from a one-dimensional space it is enough
to know what happens to k. Hence we really mean tr(F )(k).
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Let’s see what this means in our two examples. Consider C = Loc(X). We obtain

HH∗(Loc(X)) := Vect
p∗−→ Loc(X)

∆!−→ Loc(X ×X)
∆∗−−→ Loc(X)

p!−→ Vect.

To see what this means consider

LX X ∗

X X ×X

∗
but local systems satisfy base change, i.e. ∆∗∆! = π!π

∗. So we have

p!π!π
∗p∗k ' p!π!kLX ' (pLX)!(kLX) ' C∗(LX)

though the last equivalence is not so clear yet. Now going the other way we find

HH∗(Loc(X)).

It doesn’t look very nice with respect to S1 since we’ve broken the symmetry in
two, but that can be fixed.

Now consider C = ModR. Then C∨ = ModRop . The pairing is the relative tensor
product

ev : ModR ⊗ModRop → Vect

sending M,N 7→M ⊗R N . For the copairing,

co : Vect→ ModRop ⊗ModR ' ModRop⊗R

sending k 7→ R. Identifying ModR⊗Rop ' ModR ⊗ModRop we obtain

(M ⊗k N) ' (M ⊗k N)⊗Rop⊗R R̄.

Composing, we find that

HH∗(ModR) = R⊗Rop⊗R R,

where of course everything is fully derived.

17. June 18, 2018 – Claudia Scheimbauer

There are two motivating notions for dualizability. The first is that of an adjoint
pair of functors L,R between two categories C,D. The unit and counit yield that
L =⇒ LRL =⇒ L and R =⇒ RLR =⇒ R are the identity. The second is
that of a vector space, which has a dual V ∗ if and only if we have evaluation and
coevaluation maps satisfying V → V ⊗V ∗⊗V → V and V ∗ → V ∗⊗V ⊗V ∗ → V ∗

are identities. Notice the similarity between these two examples.
In the first example we are working in the bicategory Cat whose objects are cat-

egories, morphisms are functors, and 2-morphisms are natural transformations. On
the other hand we could just as well take any bicategory B and have our categories
C and D be instead just objects in B and the adjoint pair just 1-morphisms in
B satisfying the relevant properties. Recall for instance Damien’s example in the
cobordism category.

In the second example we are working in Vect, a symmetric monoidal category
where we have objects vector spaces, morphisms linear maps, and then suggestively
let’s notice that we have a tensor product ⊗. Instead we could just take any
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symmetric monoidal category C and take two objects in here V and V ∗ satisfying
the same properties.

The goal for today is to discuss a generalization of the two examples above.
Today will be purely algebraic, with the geometric intuition presented next time,
about TFTs. Recall from last week the cobordism hypothesis (sketched by Lurie,
in progress Ayala-Francis) which said that the evaluation

Fun⊗(Bordfr
n , C)

evpt−−−→ C

factors through Cnd, which is the subcategory of n-dualizable objects and the map
Fun⊗(BordFr

n , C) → Cnd is an equivalence of underlying ∞-groupoids. The details
here are not so important here but we just want to highlight the importance of
n-dualizability. For instance having a n-dualizable object in a symmetric monoidal
∞-category automatically yields, by the cobordism hypothesis, a TFT.

Let’s now look at the definition of n-dualizable. As a warm-up, let’s talk about
algebras. If we go back to our second example above, recall that V a vector space has
a dual if and only if V is finite-dimensional. What about other targets? Consider
Algk, the bicategory having objects algebras over k, morphisms being bimodules

AMB , and 2-morphisms being maps of bimodules. Here the symmetric monoidal
structure is given by ⊗k. The composition of bimodules is given

BNC ,AMB 7→M ⊗B N.

Algebraically, to study this bicategory we might try to study modules. More spefi-

cially we build Algk → Catk sending A 7→ ModA and AMB 7→ ModA
−⊗AM−−−−−→ ModB .

Notice that if the bimodule is invertible then one obtains an equivalence of module-
categories.

We claim that every algebra A is dualizable. Let’s start the proof — you can
finish it. The dual of A is the opposite algebra Aop. We take

evA = Aop⊗AAk, coevA = kAA⊗Aop

and then one needs to check that the appropriate compositions yield the identity.
Consider now the category of pointed vector spaces v ∈ V where the morphisms

are linear maps preserving the pointing. Then we claim that only 1 ∈ k is dualizable.
Now what about adjoints? Let’s go back to Algk. A 1-morphism AMB in Algk

has a left adjoint if and only if M is finitely presented and projective over A.
Replacing left with right just switches A to B. This is an exercise, with the hint to
use the dual basis lemma.

Let’s now pass to n-categories. In this setting we have objects, 1-morphisms,
2-morphisms, and so on up to n-morphisms. If we pass to (∞, n)-categories we have
even higher morphisms, but they are all required to be invertible. Now if k ≤ n
then we define τ≤kC by discarding noninvertible morphisms for ` > k. Let’s start
with C a symmetric monoidal (∞, n)-category. Truncate and take the homotopy
category h1τ≤1C, which is symmetric monoidal. If C is an (∞, n)-category then
we obtain h2(τ≤2C) a homotopy bicategory. By truncating in this way we pass to
settings where we can actually talk about adjoints.

From now on we will set C to be a symmetric monoidal (∞, n)-category.

Definition 47. An object x ∈ C is dualizable if its image in h1(C) is dualizable.
If f is a k-morphism in C (for 1 < k ≤ n− 1) it might be a map between maps

α, β that are maps between a and b (which may or may not be objects). Then
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h2τ≤2 HomC(a, b) is a 2-category and we say that f has a left/right adjoint if the
image of f here has a left/right adjoint.

Definition 48. We say that C is n-dualizable if every object has a dual and every
k-morphism, for 1 ≤ k ≤ n− 1 has a left and right adjoint. In this case we say that
any object x ∈ C is n-dualizable.

Example 49. The category Bordn with or without framing is n-dualizable.

Now if D is an arbitrary symmetric monoidal (∞, n)-category then we have
Dnd → D the subcategory of n-dualizable objects and k-morphisms with adjoints.

Let’s look at some examples of 2-dualizable objects in Algk. We saw that every
object is (1-)dualizable. Moreover we saw that AMB has a left-adjoint if and only
if it is finitely presented and projective over A. To test whether an object of A is
2-dualizable we need to check that evA = Aop⊗AAk has left and right adjoints as
well as that coevA = kAA⊗Aop has left and right adjoints. The existence of right
adjoints requires finitely presentable and projective over k and the existence of left
adjoints requires separable over k.

Recall that (Calaque-Scheimbauer) using factorization algebras we obtain an
(∞, n)-category where the objects are En-algebras, maps are bimodules are En−1-
algebras, 2-morphisms are bimodules of bimodules in En−2 algebras, etc. So for
n = 2 we might give a definition of objects being locally constant factorization
algebras on a disk, maps are constructible factorization algebras on a disk with a
line passing through, 2-morphisms are constructible factorization algebras on a disk
with a line passing through with a point on the line, etc.

Theorem 50 ((Gwilliam-Scheimbauer)). This category Algfact
n is n-dualizable.

Recall that our motivation was to invoke the cobordism hypothesis: every A
determines a fully extended TFT

Bordfr
n → Algn.

This map is explicitly given by factorization homology, as outlined by Damien.

Theorem 51 ((Gwilliam-Scheimbauer)). Only 1 is (n+ 1)-dualizable.

This is not so great because we would actually like to have more than just n-
dualizability. This means we “need to get rid of points”.

18. June 18, 2018 – Chris Brav (exercise section)

We will provide various exercises of different tastes.
1. Let X be a smooth scheme. Compute HH∗(QCoh(X)) via diagonal and via

base change. Use

co :Vect
∆∗p

∗

−−−→ QCoh(X ×X)

ev :QCoh(X ×X)
p∗∆

∗

−−−→ Vect

This is halfway to HKR.
2. Recall looping delooping: for X connected, X ∼ BΩX. We claimed that

Loc(X) ' C∗(ΩX)−Mod. Now consider ι : ∗ → X. We can induct ι!k First, what
is End(ι!kx)? Second, show that the induced ι!k is a compact generator for Loc(X).
Third, take X = BS1. Describe C∗(ΩBS

1) and modules over it. To make things
easier assume that the ground field we are taking chains over is Q (hint: formality).
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3. More abstractly, let C be a (big) dg category. We say that x ∈ C is compact
if C(x,−) : C → Vect is continuous. We say that x ∈ C is a compact generator if x
is compact and the functor C(x,−) has trivial kernel. Then the basic result/fact of
Morita theory is that C ' Mod− End(x).

Fact: for C = Mod(R), M ∈ C is compact if and only if it’s a retract of a finitely
built module (i.e. repeated cofibers of (shifted) direct sums of R).

Let’s return to the algebro-geometric setting. Consider a polynomial map F :
An → Am with F = (f1, . . . , fm) with fi ∈ k[x1, . . . , xn] (say nonconstant). Con-
sider the fiber F−1(0). Classically this is the spectrum of the polynomial ring

Spec
k[x1, . . . , xn]

(f1, . . . , fn)
.

Often this sequence is not regular (especially if m is very big). Instead we should
take some sort of derived or homotopy fiber:

F−1(0) An

0 Am

We should take O whence we take Spec of the derived tensor product

Spec(k ⊗k[t1,...,tm] k[x1, . . . , xn]).

To compute this derived fiber we resolve k as a commutative dg algebra over
k[t1, . . . , tm]. There is a standard way to do this called the Koszul resolution.
What we’ll get after the tensor product is the free commutative algebra

k[x1, . . . , xn, y1, . . . , ym]

where |yi| = −1 and dyi = fi. You can check that this has, in degree zero, the coho-
mology the usual quotient. Play around and notice that you may have cohomology
in nonzero degrees.

Let’s say some more about the HKR theorem. C.f. Loday for the commutative
case. Let’s do one example where you see most of what’s going on. So remember
the claim was that

HH∗(QCoh(X)) ' Γ(X,⊕Ωp[p]).

Let’s consider the proof for X = An (in general use free resolutions). There would
be an intermediate step

HH∗(QCoh(X)) ' Γ(X ×X,∆∗OX ⊗∆∗OX) ' Γ(X,∆∗∆∗OX)

and recall that everything is derived so you need to resolve the sheaf first. Koszul
resolution of ∆∗OAn on An × An with coordinates x, x′. Take fi = xi − x′i.

Let’s back up a bit and describe the lower-shriek operator. Recall that Loc(X) =
Fun∞(X,Vect). Given a map f : X → Y there is an obvious restriction functor
Loc(Y )→ Loc(X). One definition of f! is that it is the left adjoint of f∗. This is a
good definition if you can show that it exists. Say we choose x ∈ X. Then we have
a map of chains on based loop spaces C∗(ΩX) → C∗(ΩY ). If X,Y are K(π, 1)’s
then this is really just a map on π1’s and on the group algebras. But for any map
of dg algebras R→ S we can restrict and induce representations. The induction is
given −⊗R S and the restriction is given HomS(S,−).
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Let’s sketch the solution to the topological exercise above. Notice that

End(ι!k) ' Hom(ι!k, ι!k) ' Hom(k, i∗ι!k)

But using base change we obtain

End(ι!k) ' Hom(k, π!π
∗k) ' C∗(ΩxX; k)

where π is the map from ΩxX → {x}. This last equivalence you want to think
of as coming from the chain level Eilenberg-Steenrod axioms. Local systems on a
point are completely determined by what happens at the point as spaces are just
homotopy colimits of points.

Now for the last part of the problem notice that C∗(ΩBS
1) ' C∗(S

1) is a dg
algebra. In characteristic zero one shows that any dg algebra is quasi-isomorphic
to its homology as an algebra. In our case we have (homologically) Q[ε]/ε2 where
|ε| = 1. Let R be a homologically graded dga whose homology is Q[ε] with ε2 = 0
and d = 0. Then it is quasi-isomorphic to Q[ε] as a dga. What is a dg module over
this algebra? These are called mixed complexes, and it is one way of discussing
complexes with an S1-action. For instance Hochschild homology is a mixed complex
under b and B (the latter corresponding to ε). More explicitly given a Q[ε]-module
E∗, it is a complex under a differential b together with a square-zero grading-
increasing differential B. Notice that Leibniz tells us that, since dε = 0

b(Be) = b(B)e−B(be) = −B(be).

We conclude that bB+Bb = 0. Notice that we should not think of this as a double
complex! Quasi-isomorphism between these mixed complexes does not care about
B! It is just a quasi-isomorphism of the underlying complexes.

You could instead consider modules over cochains over S1. This would be a very
different category: you’d get instead unipotent local systems.

We have Loc(BS1) ' Modk[ε] which is just mixed complexes. We have maps
p!, p∗Loc(BS1)→ Vect and p∗ : Vect→ Loc(BS1). Notice that

p!E ' k ⊗k[ε] E, p∗(E) ' Homk[ε](k,E)

which we think of as coinvariants and invariants of S1 respectively. In the cyclic
homology literature these are known as cyclic chains HC∗(E) and negative cyclic
chains HC−∗ (E).

What about periodic cyclic homology? Note that endomorphisms of the trivial
module k, Endk[ε](k) acts on HC−(E). Here’s a fun exercise (never read a book
on cyclic homology just do this exercise). Resolve k as a k[ε]-module. There’s only
one way to do this unless you’re really crazy. Using this resolution you will find
the standard complexes for cyclic and negative cyclic chains and you will be able
compute this endomorphism algebra.

Under the equivalence between k[ε]-modules and local systems on BS1 k and
kBS1 are identified. Hence their endomorphisms are equivalent. But End(kBS1) '
C∗(BS1, k) = k[u], which has cohomology of one-dimension in each degree and in
fact turns out to be formal in characteristic zero. Here |u| = 2 (cohomological).
Now k[u] acts on Endk[ε](k) and one obtains periodic cyclic homology

HP (E) = HC−(E)[u−1].
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Why is this something you might be interested in? Well consider the HKR theorem.
For X a smooth affine variety we have

(HH∗(QCoh(X), b, B) ' (⊕ΩpX [p], 0, ddR).

If X were singular you’d have the cotangent complex instead. Let’s isolate the com-
ponent p, HH∗(X)(p) = ΩpX [p]. Now HC−∗ (p) = (0→ · · · → ΩpX → · · · → ΩdX)[2p]
is the pth level of the Hodge filtration. Think of HC− → HP giving a Hodge
filtration for de Rham cohomology where we think of HP as the noncommutative
de Rham cohomology.

Here are some recommended references:

• Gaitsgory has a short note on dg categories
• Gaitsgory-Rozenblyum
• for more on local systems there’s Lurie’s DAG XIII on rational homotopy

theory
• Lurie’s notes on surgery theory have some nice examples

19. June 19, 2018 – Ezra Getzler

Let’s start with a calculation: Brown’s lemma. There are two different ways
of stating it. The first that all morphisms can be factorized, or alternatively, the
diagonal maps Y → Y × Y can be factorized. Recall that since everything is
fibrant we can consider the pullback Y → ∗ ← Y , which is denoted Y × Y . Any
factorization

Y
∼−→ PY � Y × Y.

we call the path space. Since PY → Y × Y is a fibration, the two projections
PY → Y are trivial fibrations. Thus for any X,

X ×Y PY
�∼ X

has a section s : X → X ×Y PY whence since PY has a map to Y , we obtain a
factorization of any map X → Y through X ×Y PY . In other words, every map
factors into a section of a trivial fibration followed by a fibration. The map is a
weak equivalence if and only if the fibration is a trivial fibration.

Now given any functor F : V → C a functor from a category of fibrant objects to
a category with weak equivalences, if it takes trivial fibrations to weak equivalences
then it takes weak equivalences to weak equivalences, i.e. it is a homotopy functor.
The theme here is that weak equivalences are often hard to get a grip on, whence
we work with trivial fibrations instead. We will explore this theme in the context
of Lie groupoids.

Recall from last time that Kan complexes of bounded size form a category of
fibrant objects. We defined the fibrations and trivial fibrations last time. It is then
a bit of a story to check that you actually have a category of fibrant objects. For
instance you should check that every trivial fibration or isomorphism is a fibration.
What about something like 2-out-of-3? Suppose we have a pair of fibrations.

X
f−→ Y

g−→ Z

If f is a trivial fibration and the composite is a trivial fibration then it is easy to
show that g is. It is much harder to do the same if we swap f and g in that statement
(see Ezra’s paper). For 2-out-of-6 in a category of fibrant objects, it was shown by
Blumberg-Mandell in a slightly different setting, which still works, is equivalent to
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2-out-of-3 together with the axiom that the retract of a weak equivalence is a weak
equivalence.

Our approach to Lie groupoids now, will be to completely imitate Kan complexes.
In particular, take V to be our (small) category of “spaces”, which we assume to
have finite limits and we assume to be equipped with a subcategory of “covers”.
These covers must satisfy that: every isomorphism is a cover, pullbacks of covers
are covers, and a cancellation axiom:

X
f−→ Y

g−→ Z

if f and gf are covers then g is a cover. This last axiom is not generally taken
classically, but if you check the Stacks project you’ll find that all of them satisfy
the cancellation property. Notice that the subcanonicalness is not as important in
the derived case.

Example 52. Let V be the category of finite sets with the subcategory of covers
being the surjective functions. This will recover the finite Kan complexes.

Example 53. The example we want to focus on is that of (higher) Lie groupoids.
We can’t consider manifolds since they don’t have finite limits (well ok one could
work with C∞-schemes, etc.) so maybe consider V to be complex analytic spaces
where covers are surjective submersions. There is no particular reason to work
finite-dimensionally — instead one might take V to be a Banach analytic spaces
(originally due to Douady).

Fix k ∈ {0, 1, . . . ,∞}. Define sV to be the category of simplicial spaces. This
will actually be way too general for our purposes.

Definition 54. We say that f : X• → Y• is a fibration of simplicial spaces if for
every n ≥ 0 and 0 ≤ i ≤ n, the map

Xn → Hom(Λni , X)×Hom(Λn
i ,Y ) Yn

is a cover. A trivial fibration is a map for which (n ≥ 0)

Xn → Hom(∂∆n, X)×Hom(∂∆n,Y ) Yn.

Now the same proofs in the case of Kan complexes will go through, replacing
everywhere “surjective” with “cover.

Now we turn to an idea of Duskin, from the 70’s, which he called k-dimensional
hypergroupoids. But after working in the field for 20 years, Ezra has decided that
there’s no better definition of a k-groupoid. . .

Definition 55. A simplicial space X• is a k-groupoid if

Xn → Hom(Λni , X)

is a cover for n > 0 with 0 ≤ i ≤ n and an isomorphism if n > k.

Notice that for n = 1 we are roughly generalizing that source and target maps
in a Lie groupoid are submersions.

Theorem 56 (Behrend-Getzler). The category of k-groupoids forms a category of
fibrant objects.
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The basic strategy is the to phrase things so that everything is phrased in terms
of covers.

Notice that in general a k-groupoid is (k+ 1)-coskeletal (assuming that retracts
of covers are covers, which is very likely an innocuous condition). This means that

Xn
∼= Hom(skk+1 ∆n, X).

For k = 1 we obtain just Lie groupoids. The basic story, then, is that X0 will be
the space of objects of our groupoids and X1 will be the space of morphisms. Now
notice that Hom(Λ2

1, X) is the space of composable morphisms and we ask that X2

be isomorphic to this space. Similarly for Λ2
0 and Λ2

2, which gives us left and right
inverses.

Let A∗ be a dg algebra (really this should be a category). Assume that Ai = 0
if i ≤ −k. From this data we will produce a Lie k-groupoid. We think of this as
the classifying space of the (homotopy) invertible elements in A. Define E(n) =
N•[[n]], i.e. the nerve of the groupoid where we take the category [n] and invert
all morphisms. It’s a rather stupid groupoid as it has one object and everything
is isomorphic in one way; in that sense it’s a presentation of the trivial groupoid.
The terminology E(n) is due to Rezk and Joyal calls J = E(1) as it is an interval
object.

Given µ ∈ A1 we have a map A1 → A2 sending

µ 7→ dµ+ µ2.

This Maurer-Cartan map/equation describes perturbations of the differential of A.
Notice that if we define dµ = d + ad(µ) i.e. dµx = dx + µx ∓ xµ, then d2

µ = 0 if

dµ + µ2 = 0. This is of course the condition that a connection be flat but in this
context probably goes back to Kodaira and Spencer. Now we define

NnA = MC(C∗(E(n))⊗A∗)
where MC is the Maurer-Cartan locus and C∗ is actually normalized cochains.

Theorem 57. The nerve NnA is a k-groupoid.

The hard part of the proof is showing that the source and target maps are covers,
i.e.

MC(C∗(E(1)⊗A∗))→ MC(A∗)

This is related to the theory of complete Segal spaces somehow.
What if A is an algebra? Then a little calculation shows that for n = 0 we just

get a point (the unique Maurer-Cartan element). For n = 1 you’ll find that you
get the invertible elements GL(A) of A. In other words we reproduce the theory
of the Lie group of invertible elements of A. As an extreme case suppose A has
a vanishing product. Then we are working just with chain complexes and one
produces the Eilenberg-Maclane space of τ≤1A[1].

There’s another construction N•A where we use the usual simplex, not the fat
simplex. One obtains NnA = Hom(E(n), N•A).

20. June 19, 2018 – Chris Brav

Today I want to talk about something a bit more geometric, an introduction
to derived algebraic geometry, in particular how to deal with differential forms.
The point of derived algebraic geometry is to deal with degenerate situations, par-
ticularly intersections. Yesterday we saw an example where we took a homotopy
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pullback to obtain a free loop space. In classical algebraic geometry, however, there
is no a priori notion of homotopy — identifying two things sets them equal. To
take a derived fiber product, for instance, we need to ’resolve’ rings of functions.
For simplicity we will work in characteristic zero.

Functions in derived algebraic geometry form commutative dg algebras. In the
affine case we assume that our functions are bounded above at zero:

· · · → A−2 → A−1 → A0 → 0.

We denote the category of such cdga≤0
k .

Example 58. Recall the Koszul cdga from yesterday. Let F : An → Am be a map
given by f1, . . . , fm. We obtained a cdga k[x1, . . . , xn, y1, . . . , ym] with |yi| = −1
and dyi = fi.

Example 59. The following is a nonexample. Let X be a smooth affine variety.
Then its de Rham complex

OX → Ω1
X → · · · → ΩdX

is not an example! Indeed, it is functions on some sort of stack instead of an affine.

Very formally, the category of derived affine schemes is given

Aff = (cdga≤0)op

where a cdga A corresponds to SpecA. Let U = SpecA. Then we define

QCoh(U) = ModA,

the dg category of dg-modules over A. Because A is connective, truncation τ≤kM
is again an A-module (for k ≥ 1). This is good because we get a t-structure.

Now given a cdga A the cohomology in degree zero H0(A) is a usual commutative
algebra with a map A→ H0(A) of cdgas. Dually, we obtain a map

SpecH0(A) ↪→ SpecA,

which is some kind of infinitesimal thickening in a way that can be made precise.
What is the derived analog of derivations? Classically a derivation is a k-linear

map δ : A→M satisfying the Leibniz rule. If A is a cdga and M is a dg module, we
use the same definition except we use graded Leibniz. The usual K ahler differentials

Ω1
A is the universal module that receives a derivation from A, A

ddR−−→ Ω1
A such that

Derk(A,M) ∼= HomA(Ω1
A,M). We can do the same corepresentability in the derived

setting:

Der(A,M) ∼= HomA(Ω1
A,M),

where Ω1
A is now a complex. Warning: Ω1 does not respect quasi-isomorphisms of

cdgas. It does respect quasi-isomorphisms for (at least) quasi-free cdgas (graded free
after forgetting differentials). The basic example is the Koszul complex from before.
Claim: this is one way to compute the cotangent complex LA in characteristic zero.

Example 60. Let’s do the Koszul cdga A. Over A,

Ω1
A = 〈ddRx1, . . . , ddRxn, ddRy1, . . . , ddRyn〉

where |dxi| = 0 and |dyi| = −1 with differential d = dΩ

dΩ(ddRyi) = ddR(dAyi) = ddRfi =
∑ ∂fi

∂xj
ddRxj
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where first equality follows since the universal derivation is a map of complexes. So
K ahler differentials for the Koszul cdga detect the rank of the Jacobian dF . Notice
that if F is not a submersion then there is cohomology in degree -1 of Ω1

A.

To pass to the nonaffine setting we will use the functor of points. In this derived
setting, to get a good Yoneda lemma, has to be valued in Spaces or homotopy types
or ∞-groupoids (all of these are equivalent in all models for higher categories). We
will just call them Spaces here. Thus the most general object in derived geometry
is an ∞-functor from cdgas to spaces.

Definition 61. A (derived) prestack X is an ∞-functor

Affop = cdga≤0
k

X−→ Spaces.

The ∞-category of all such we denote by PrStk.

This is doing two things at once — generalizing our affines to derived affines and
generalizing stacks to higher stacks (we are valued in homotopy types instead of
just groupoids).

Among these presheaves there are those that are representable:

(SpecA)(B) = Maps(A,B).

This is just the Yoneda embedding

Aff ↪→ PrStk.

What’s a nonaffine example? Let’s suppose that G is a group in PrStk, e.g. some-
thing like GLn. Then we have the usual simplicial diagram associated to G. Taking
the geometric realization (homotopy colimit) we obtain, by definition, the stack BG.

Notice that PrStk has an internal hom, right adjoint to the product ×. Consider
the following example. If K ∈ Spaces then we obtain a constant prestack A 7→ K
which we call just K. Hence Spaces ↪→ PrStk is a fully faithful embedding. In
particular, consider

LX := PrStk(S1, X).

Writing the circle as a homotopy pushout

S0 ∗

∗ S1

we obtain

LX ' PrStk(∗, X)×PrStk(S0,X) PrStk(∗, X) ' X ×X×X X.

This is an object that is not meaningful in classical algebraic geometry but is
meaningful here. For instance the underived pullback would just be X again.

Now we pass to quasi-coherent sheaves. Let X be a (derived) prestack. By
definition we know how to map affines into it. Whatever a qc sheaf is, we should
be able to pull it back along such a map. And if I had factorization of the map I
should get a commutative diagram. We just take this as the definition.

Definition 62. The category QCoh(X) is the category of quasi-coherent sheaves
on affines mapping to X that are compatible under pullbacks. Formally

QCoh(X) = lim
(Aff/X)op

QCoh(U).
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where the limit is computed in dgCatcont (or alternatively what Jacob Lurie calls

PrL, presentable ∞-categories and in fact even just in Cat∞).
Likewise Perf(X) = lim Perf(U).

Remark 63 (Comparison to quasi-coherent sheaves on schemes). Traditionally quasi-
coherent sheaves on schemes are defined by gluing in the Zariski topology or the
faithfully flat topology (fppf). To compare, you just have to check that our con-
struction satisfies descent.

Example 64. Here’s an example of a prestack that is really not a scheme. Let
XdR be the de Rham stack of X, given

XdR(A) = X(H0(A)/nilradical).

In other words, XdR identifies nearby points. For instance there is a map X → XdR

that identifies infinitesimally nearby points (in the form of maps SpecA,SpecA′

into X that differ only by nilpotents).
Now we define

D−Mod := QCoh(XdR).

If X is smooth then this is the usual notion of a D-module. This is also the
same as the definition when you have singularities. This idea actually goes back to
Grothendieck probably, c.f. “Dix exposes de cohomologie”.

Notice that each prestack has a structure sheaf (coming from the structure
sheaves of affines mapping in). Then it turns out that

Γ(XdR,OXdR
) ' H∗dR(X).

21. June 20, 2018 – Laura Wells

Recall that there are two different ways of talking about sheaves: one, we might
have sheaves on a specific manifold, or two, we might have a sheaf on the site of all
manifolds of dimension n. There is analogous notion for factorization algebras. So
far people have mostly been discussin factorization algebras on a fixed manifolds.
We’ll describe the second approach.

Our plan is to first define these G-factorization algebras and then relate them
to equivariant factorization algebras. We will then sketch a proof of the fact that
these are equivalent.

Why might we be interested? Well the latter approach gives a nice categorical
interpretation of the descent condition. Moreover Scheimbauer has shown (in her
thesis) that locally constant factorization algebras yield fully extended TFTs. More
generally Dwyer-Stolz-Teichner are showing (work in progress) that G-factorization
algebras yield twisted G-field theories.

To start off I should tell you the site of manifolds that we’re working with. Fix
M an n-manifold and a Lie group G which acts smoothly G×M →M .

Definition 65. We define the symmetric monoidal category GMan whose objects
are manifolds X equipped with a G-structure. This means that X has a maximal
atlas {Ui, φi) where φ : Ui

∼−→ Vi ⊂M and moreover we have {gij ∈ G} such that

Ui ∩ Uj

Vi Vj

φi

φj
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commutes and satisfying gjkgij = gik. The morphisms in this category are maps
f : X → Y together with {fi′i ∈ G} for all pairs of charts with

Ui U ′i

M M

φi

f

φi′

fi′i

satisfying fj′jgji = gj′i′fi′i. The monoidal structure is given by disjoint union.

Example 66. One can define a Euclidean structure, where M = Rn and G =
Rn o O(n). More interestingly we might define a Euclidean spin structure, where
M = Rn and G = RnoSpin(n), or a conformal Euclidean structure where M = Rn
and G = Rn o (SO(n)× R+).

Definition 67. A G-factorization algebra is a lax symmetric monoidal functor

F̂ : GMan→ Ch

satisfying

(1) multiplicative axiom: X1, . . . , Xn ∈ GMan,

F̂ (X1)⊗ · · · ⊗ F̂ (Xn)
∼−→ F̂ (X1 t · · · tXn)

(2) descent axiom: for any Weiss cover U = {Uα}α∈A of X ∈ GMan, there is a
weak equivalence

hocolim
(
⊕F̂ (Uα0

)→ ⊕F̂ (Uα0
× Uα1

→ · · ·
)
∼−→ F̂ (X)

Recall that a Weiss cover of X ∈ GMan is {fα : Ui ↪→ X} = U such that for
any finite S ⊂ X there exists some fα such that fα(Uα). Notice that this defines a
Grothendieck topology on GMan.

Let’s recall the previous notion of a factorization algebra and extend it to the
G-equivariant case.

Definition 68. A G-equivariant factorization algebra on M (connected) is

F : Open(M)→ Ch

with structure maps satisfying associativity and commutativity satisfying multi-
plicativity and descent. Moreover for each g ∈ G and U ⊂ M we requite equiva-
lences σUg : F (U)

∼−→ F (gU) such that

(1) σ1 = id;
(2) σgh = σg ◦ σh;
(3) we have a commutative diagram

F (U1)⊗ · · · ⊗ F (Un) F (gU1)⊗ · · ·F (gUn)

F (V ) F (gV )

Notice that now instead of only looking at maps induced from U ⊂ V we can
now look at maps coming from the fact that U can be G-translated to be in V .

The following theorem is work in progress.

Theorem 69 (Wells). G-equivariant factorization algebras on M are equivalent
(as dg categories) to G-factorization algebras.
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To prove this it is useful to pass through an intermediary category.

Definition 70. Define DisjM to be the subcategory of GMan consisting of finite
disjoint unions of connected opens in M . This inherits the symmetric monoidal
product of disjoint union.

This is similar to Disk/M from Lauren’s talk, but here we are not requiring the
opens to be disks. Moreover we are not remembering that they be embedded in M
(this way we can have things like M tM .

Proposition 71. G-equivariant factorization algebras on M (à la Costello-Gwilliam)
are equivalent to symmetric monoidal functors DisjM → Ch which satisfy multiplica-
tivity and Weiss descent.

Why does this work? Given a Weiss cover of a disjoint union one can decompose
it to Weiss covers for each open, from which the conditions will follow. I don’t want
to go into the details here, and instead I want to sketch a proof of the theorem.

Proof sketch. To go from G-equivariant factorization algebras just consider

DisjM

GMan Ch

F :=F̂ |DisjM

F̂

The other direction is more interesting. We left Kan extend

DisjM Ch

GMan

F

ι!F=:F̂

Let’s check multiplicativity of this extension. For X1, X2 ∈ GMan we wish to show
that we have a weak equivalence F̂ (X1)⊗F̂ (X2)

∼−→ F̂ (X1tX2) (say X := X1tX2).
Well we have an explicit formula

F̂ (X) = i!F (X) = colim
(
i/X → DisjM

F−→ Ch
)

where we send (U → X) 7→ U 7→ F (U). But notice that i/X ' i/X1
× i/X2

. Now
we use a Fubini-type property of colimits over product categories.

What about descent. We want to show that for each Weiss cover U of X we can
write F̂ (X) as a homotopy colimit over a certain simplicial diagram. Define Û to
be the full subcategory of GMan/X of objects subordinate to U in the sense that

Y X

Ui

Now consider the composition

Û jU−→ GMan/X → GMan
F̂−→ Ch

where we call the composition of the last two arrows F̂ .
But now F̂ satisfies descen with respect to a Weiss cover U of X if and only if

colim(Û (jU )∗F̂−−−−→ Ch)
∼−→ F̂ (X).
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Hence F̂ satisfies descent for any Y ∈ GMan/X with respect to U|Y (the pullback
Weiss cover),

(jU )!(jU )∗F̂

i.e. F̂ satisfies descent with respect to jU . This will imply descent for F̂ . �

22. June 20, 2018 – Pelle Steffens

We have a long term goal of understanding the moduli of flat G-connections as
a derived smooth Artin stack (and maybe extend this to other solutions of elliptic
PDEs). Today we will just try to describe what derived smooth geometry is. Recall
that in derived geometry in general we enlarge our category of spaces by add certain
limits via passing from algebras of functions to graded algebras of functions and
then adding colimits by passing to ∞-groupoid valued sheaves.

The first part consists of passing from manifolds to certain derived smooth affines;
this is the main subject of today’s talk. Recall that in manifolds there are certain
good pullbacks that we can construct, of submersions. Consider however a smooth
function R→ R whose preimage is the Cantor set. This is of course not a manifold.
Sometimes on the other hand we take an intersection which is a manifold but of the
wrong dimension. We want to work with objects for which we can define virtual
dimension, etc. that is correct/as expected.

In what follows all notions are ∞-categorical.

Definition 72 (Lurie, DAG V). Let T be an ∞-category. An admissibility struc-
ture on T is the data of:

• a subcategory T ad containing all objects of T
• a topology on T such that every covering sieve on X ∈ T contains a covering

sieve generated by a collection {Ui → X} satisfying
– for all f : U → X admissible and for all G : Y → X, the pullback
Y ×X U exists and the map Y ×X U → Y is admissible

– if f = gh then if f and g are admissible then h is too
– admissible are stable under retracts

Definition 73 (Lurie, DAG V). A pair (T, T ad) with T an ∞-category with finite
products and T ad an admissibility structure is called a pregeometry. A pair (G,Gad)
as above but with G containing all finite limits is called a geometry.

Example 74. Define T diff = N(Man). The admissibility structure is (T diff )ad

consisting of open embeddings. We could also have chosen surjective submersions
(maybe not says Ezra?). This would yield the smooth topology instead of the étale
topology. For the purposes of adding limits they should both work the same. A
collection {Ui → X} generates a covering sieve if and only if Ui cover X.

Example 75. Another example is Lawvere theories. We take T = {R0,R1, . . .}
Cartesian spaces with the trivial admissibility structure where only equivalences
are admissible.

A small variant of this would be to take T Cartesian spaces where the morphisms
are polynomial maps.

Example 76. If you wish to work analytically take T an = N(Cplx) and the admis-
sibility structure to be the open immersions. See for instance Mauro Porta’s thesis
and papers.
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Example 77. Consider T etk = N(CAlg)op with admissible maps the étale maps.
This will recover derived algebraic geometry.

Now if T is a pregeometry and C an ∞-category with finite limits, we denote
Funad(T, C) to denote functors preserving pullbacks along admissible maps.

Definition 78. Let T be a pregeometry. Then the derived geometry associated to
T is a geometry G equipped with a map φ : T → G with φ ∈ Funad(T,G) such that
for any ∞-category C with finite limits such that

Funlex(G, C)→ Funad(T, C)
is an equivalence (here lex means left exact).

Of course G always exists by adding certain limits but we would like a less
abstract description that we can actually do geometry with.

So our goal is now to find G for various pregeometries.

Example 79. The category cdga≤0 is the derived geometry for the example of
commutative algebras.

What about the differentiable case?

Example 80. In the differentiable case we take Gdiff = dSmAfffp.

Definition 81. A simplicial C∞-ring is a functor F : CartSp → Spaces such that
F preserves products. The underlying algebra we think of as F (R1). There is an
underlying simplicial commutative algebra coming from the functor from cartesian
spaces with polynomial maps to cartesian spaces. This sends A 7→ Aalg.

Theorem 82 (Steffens). There is a functor C∞ : T diff → sC∞Rings factoring
through sC∞Ringsfp. Then

C∞ : T diff → (sC∞Ringsfp)
op

is the derived geometry for T diff .

23. June 21, 2018 – Ezra Getzler

Last time we discussed briefly the Maurer-Cartan locus. We’ll talk more about
this today. Last time we used it for a dg algebra, but actually it’s defined for a dg
Lie algebra L∗. It’s going to only know about L in degrees one and two:

MC(L) = {µ ∈ L1 | dµ+
1

2
[µ, µ] = 0}.

Recall that a dg algebra gives rise to a dg Lie algebra via the graded bracket [x, y] =
xy − (−1)|x||y|yx. In this case the Maurer-Cartan equation becomes dµ + µ2 = 0.
Hence this is a generalization from last time.

The key idea is that all standard deformation problems can be reformulated as
a Maurer-Cartan locus. Suppose for instance we have an algebra A and we are
interested in deforming its product. Then Gerstenhaber introduced the dg Lie
algebra of Hochschild cochains C∗(A,A):

Ck(A,A) = Hom(A⊗k,A).

The bracket is

[−,−] : Ci × Cj → Ci+j−1
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so really we should take L∗ = C∗+1. It turns out that the Maurer-Cartan equation
says that

a1 ∗µ a2 = a1a2 + µ(a1, a2)

is an associative product. We think of this as a deformation of the usual product.
The one in the back of our minds last time was that of a compact complex

manifoldX. Let E → X be a holomorphic vector bundle and consider the Dolbeault
resolution

A0,∗(X,End(E)).

In this case the Maurer-Cartan elements are deformations of the vector bundle. This
comes about because the element µ is a (0,1)-form whence it yields a deformation
of the ∂̄ operator (this requires some analysis to show that one can in fact find a
local holomorphic frame). This example can be generalized in many ways. Suppose
for instance E∗ is a complex of vector bundles. Then

µ ∈ ⊕d=dimX
q=0 A0,q(X,End(E∗)1−q).

Here End is the complex linear endomorphisms. In general now µ allows defor-
mations into a twisted complex of vector bundles. This is related to the fact that
the best notion of a perfect complex on a compact complex manifold is a twisted
complex.

We now want to derive the Maurer-Cartan locus. There are two basic ways
of realizing derived geometry. One is to use dg objects and the other is to use
cosimplicial objects. The local story of the dg case goes back at least to 1958 due
to Tate (the first paper in derived geometry). The cosimplicial approach dates
back to the 60’s to Quillen (and Michael Barr) showed that the two approaches are
equivalent in characteristic zero. Let’s see how the derived Maurer-Cartan locus
can be expressed in these two frameworks.

We start with the dg realization. Let L be a dgla. Let M be a manifold and
V ∗ = ⊕1

i=−∞V
i be a graded vector bundle on M . Define for the pairM = (M,V ∗),

O(M) = (Γ(M,Sym(V ∗)), δM) .

This is a dg manifold or scheme. Tate’s theorem was that given an affine variety
one can can find such an object something something. What we will do is take

O(MC(L)) = C∗CE(σ≥1L
∗).

In this case M = L1 an affine space, and V i = L1 × L1−i. We define the classical
locus

π0(M) = Spec(H0(O(M))).

Lemma 83. The classical locus of the derived Maurer-Cartan locus is naturally
isomorphic to the Maurer-Cartan locus:

π0(MC(L)) ∼= MC(L).

The other approach is via cosimplicial manifolds (just as simplicial models stack-
iness). Recall that sufficiently fibrant cosimplicial objects represent homotopy lim-
its. A cosimplicial manifold recall is a functor M• : ∆→ Mfld. The main thing to
remember for the cosimplicial manifold is that it stands in for the equalizer π0(M•)
of the coface maps d0, d1 : M0 → M1. This is a prototypical example of a sifted
limit. Hence a cosimplicial manifold is a generalization of equations. Hence we
might look for a cosimplicial manifold whose corresponding π0 precisely cuts out
the Maurer-Cartan locus. In fact, there is a simpler construction.
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Recall that the Dold-Kan correspondence is a correspondence between chain
complexes and simplicial abelian groups. For instance C∗ corresponds to K(C∗)
where

K(C∗)n = Z0(Hom(C∗(∆
n), C∗)) = Z0(C(∆n)⊗ C∗).

Notice that this is very close to the construction from last time. Kaledin remarked to
Ezra that this works for any abelian category. So apply it to the opposite category
of abelian groups: this yields cochain complexes and cosimplicial abelian groups
K(C∗). The derived MC locus will be very similar to this, except a nonabelian
version.

We’re not interested in just any cosimplicial manifold. We want some sort of
fibrancy condition. Say we have a simplicial algebra O(X•). There is a well-known
Reedy cofibrancy condition on this simplicial algebra, which translated back to
manifolds yields the following. Define Mn(X•) to be the matching space

Mn(X•) = eq
(

(Xn−1)n → (Xn−2)(
n
2)
)

there should be two codegeneracy maps here. The fibrancy condition is as follows:
for all n ≥ 0 the map Mn → Mn(X•) is a submersion. This map is roughly all
the codegeneracies assembled together. The best book on descent theory according
to Ezra is Bousfield-Kan where you read about matching spaces, etc. Let’s look at
the first few conditions. For n = 0 this is saying that X0 → ∗ is a submersion, i.e.
that X0 is a manifold. The next condition is that X1 → X0 is a submersion. For
n = 2 this is saying that X2 → X1 ×X0 X1 is a submersion.

Ezra, years ago, wrote down an explicit formula for the derived MC locus using
these combinatorics (a bit more elementary than Chevalley-Eilenberg). It goes as
follows. Let Λn be the exterior algebra generated by the vertices of ∆n, i.e. we
have generators {e1, . . . , en} where deg ei = −1 and δei = 1 for all 0 ≤ i ≤ n. The
cosimplicial Maurer-Cartan locus of a dgla L∗ is

MCn(L∗) = MC(Λn ⊗ L∗).

This yields a cosimplicial scheme. This is more or less combinatorially checked that
it is fibrant. It turns out that the two maps MC0(L) → MC1(L) are just the
inclusion L1 → L1 × L2 and the MC equation x 7→ (x, δx+ [x, x]/2).

Next we are interesting in discussing derived stacks. Here we’ve just been writing
charts, and we need to assemble these into an atlas. This is going to be in a sequel
to Kai and Ezra’s paper. Let V be a category of fibrant objects with a subcategory
of covers. The covers will sit between the subcategories of trivial fibrations and
fibrations of V. The additional axiom we need, recall from last time, is that if we

have X
f−→ Y

g−→ Z then if f and gf are covers than g is a cover.

24. June 21, 2018 – Chris Brav

Let A be a cdga and M a dg module. some things that I missed
More generally suppose we have a map B → A of cdgas and a map B → A⊕M →

A commuting with the map B → A. Write f : U → V for the map of affine spaces
corresponding to the map B → A. This is the same data of a derivation B → f∗M ,
which is the same as a B-linear map Ω1

B → f∗M , which is the same as an A-linear
map f∗Ω1

B →M . We now want to globalize this.
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Given a prestack X : Affop = cdga≤0
k → Spaces and a point SpecA = U

x−→ X
and F ∈ QCoh(U)≤0, we look at extensions

Spec(A⊗ F ) = UF

SpecA = U Xx

Define
QCoh(U)≤0 → Spaces

sending F 7→ MapsU/(Uf , X) = Maps(UF , X) ×Maps(U,X) {x} (this last expression

of course being homotopy fiber product).

Definition 84. Say that X has a cotangent space at x if this functor (above) is
corepresented by T ∗x (X) ∈ QCoh(U)− (bounded above).

Note that if X = SpecB then T ∗x (X) = f∗Ω1
B .

Next we consider how cotangent spaces pullback. Suppose we have f : U → V
and insert diagram here. In other words, we have a precomposition

Maps
V/

(Vf∗F , X)→ Maps
U/

(UF , X).

Now suppose we have cotangent spaces at x and y. Then

Maps
U

(f∗Ty(X), F ) ' Maps
QCoh(V )−

(Ty(X), f∗F )→ Maps
QCoh(U)

(T ∗x (X), F ).

You can check that this is natural in f . Now (co)Yoneda yields a map

T ∗x (X)→ f∗Ty(X).

Definition 85. If the prestack X has all cotangent spaces and this (co)Yoneda
map is always an isomorphism then this compatible system of quasicoherent sheaves
defines a quasicoherent sheaf on X which we write T ∗(X) ∈ QCoh(X). We call this
the cotangent complex of X.

Remark 86. T ∗(X) exists for Artin stacks. See for instance HAG II or Gaitsgory-
Rozenblyum.

Definition 87. Let X have a cotangent complex T ∗(X). Then a p-form of degree
n is a section

α : OX → ΛpT ∗(X)[n].

This definition is fine but it is difficult to describe when they are de Rham closed.
We need a quasi-isomorphism invariant notion of closedness. We solve this issue
by introducing higher homotopies. There is an inexpensive and an expensive way
to do this. The inexpensive way (due to Pantev-Toen-Vaquié-Vezzosi) to do it is
easy to define and is good enough for Artin stacks. The expensive way (due to
Gaitsgory-Rozenblyum) is via the Hodge filtration on H∗dR(X). Let’s talk about
the inexpensive way. First define de Rham closed forms on affines.

α ∈ ΩpU [n], ddRα ∈ Ωp+1n+ 1].

Let’s do an example. Recall the Koszul complex. We have DR(A) = SymA(Ω1
A[−1])

so we had ddRx, ddRy generators which have degree 1 and 0 respectively. Suppose
we have an expression xddRy. Then

ddR(xddR) = ddRx ∧ ddRy
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whence the shift.
Now given α ∈ ΩpU [n], we obtain ddRα ∈ Ωp+1[n+ 1]. We do not ask for this to

be zero. We ask for something in

Ap,cl(A) :=
(
(Ωp)n × (Ωp+1)n−1 × (Ωp+2)n−2 × · · · , dΩ + ddR

)
which means that we ask:

ddRα0 + dα1 = 0

ddRα1 + dα2 = 0

... =
...

This is, roughly, being de Rham closed up to homotopy. Denote Ωp = Ap(A).

Definition 88. We define the p-forms of degree n to be Ap(−, n) : Affop → Spaces
sending SpecA 7→ |Ωp[n]|. Here | − | means to truncate above zero and apply
Dold-Kan. Similarly we have the close forms Ap,cl(−, n) : Affop → Spaces sending
SpecA 7→ |Ωp[n]× Ωp+1[n− 1]× · · · |.

Remark 89. These prestacks are in fact étale stacks as the cotangent complex
satisfies étale descent.

This was all just for an affine space. On a general prestack X, we would like to
define a (closed) form as a compatible (under pullback) system of closed forms on
Aff/X . A concise way of saying this is that the space of p-forms on X of degree n is

Ap(X,n) = Maps(X,Ap(−, n))

= Maps(colim
Aff/X

U,Ap(−, n))

= lim
(Aff/X)op

Maps(U,Ap(−, n))

' lim
(Aff/X)op

Ap(U, n).

We do the same for the space of closed p-forms of degree n:

Ap,cl(X,n) = Maps(X,Ap,cl(−n)

' lim
(Aff/X)op

Ap,cl(U).

Remark 90. For X a (higher, locally) Artin stack, PTVV check that

Maps(OX ,ΛpT ∗(X)[n]) ' Ap(X,n).

In general the left hand side might be a better definition, though the right hand
side has easier to define notions of closedness (no need for Hodge filtrations).

Remark 91. There is a map Ap,cl(X,n) → Ap(X,n) that forgets all but the first
form.

Let’s now go on a bit of a digression about Hochschild-Kostant-Rosenberg (see
for instance Loday chapter 5). Let U = SpecA and consider (HH∗(U), b, B). Just
to be careful let’s assume that A is almost finite type, which means that H0(A)/k
is finitely generated as a k-algebra and Hi(A)/H0(A) is finitely generated as a
module. One statement of HKR is that as mixed complexes we have

(HH∗(U), b, B) ' (SymA(Ω1
A[1]), d, ddR).
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Junwu actually wrote down the formula for this map; one checks that it is a map of
mixed complexes. Notice here that there is a +1 shift unlike the de Rham complex!
So there’s a bit of a grading shift going on. We can write/get via HKR, (more
precisely there are a few ways of getting at this weight via say Adams operations
or S1-actions, etc.).

HH∗(U)(p) ' ΩpU [p]

and

HC−(U)(p) ' ΩpU [p]× Ωp+1
U [p+ 1]× · · ·

so we obtain a way of computing these prestacks of forms and closed forms using
Hochschild and cyclic homology. More precisely, we have isomorphisms of prestacks

Ap(−, n) ' |HH∗(−)(p)[n− p]|

and

Ap,cl(−, n) ' |HC−(−)(p)[n− p]|.

25. June 21, 2018 – Kai Behrend

The main results of this talk are joint work with H.-Y. Liao and P. Xu.
Problem: The category of C∞-manifolds lacks fiber products, for instance in-

tersections or fibers or zero loci, etc. We would like to add these fiber products in a
way such that things remain smooth and controllable. In other words we would like
to construct the ∞-geometry associated to the pregeometry of smooth manifolds
with étale maps (recall that étale means local diffeomorphism). What we will end
up will be some sort of dg manifolds with étale maps. The explicit model for such
things will be as a category of fibrant objects. Notice that dg manifolds contain
deformation theory in the sense that they know about the homotopy theory of dg
Lie algebras L = L≥1.

We will start out by examining this case of deformation theory. Let L = L1⊕L2⊕
· · · a dg Lie algebra that is finite-dimensional (the whole algebra). We construct
a bundle as follows. Let M = L1 and consider a graded vector bundle over M :
L2 = L2

M ,L3 = L3
m, . . . (these are trivial). We have a section F : M → L2 coming

from the MC equation map x 7→ dx+ [x, x]/2. Notice that we obtain vector bundle
homomorphisms

L2 dµ−→ L3 → L4 → · · ·
In the fiber over µ ∈M we have dµ = d+ [µ,−]. Hence we have [−,−] : ΛL → L a
bracket which is constant along fibers. One checks that (M,L≥2, F, dµ, [−,−]) is a
bundle of curved dg Lie algebras. In other words:

• dµF = 0,
• dµ2 = [F,−],
• dµ is a derivation over [−,−] and the bracket satisfies Jacobi.

If L = L≥0 then one might find a Lie group G such that Lie(G) = L0. Let
G act on this whole structure (M,L≥2, F, dµ, [−,−]). We now pass to a quotient
(M/G, . . .) a bundle of curved dg Lie algebras on M/G.

Example 92. Let K be a finite simplicial complex and let L = C∗(K;Mn×n). This
becomes a dg Lie algebra under cup product and bracket of matrices. If we take
C≥1(K,Mn×n) we obtain a derived moduli space of flat connected on the trivial
bundle of rank n on K.
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Definition 93. A dg manifold is a triple (M,L, λ) where M is a smooth manifold,
L is L = L2 ⊕ · · · ⊕ Ln+1 (here n is called the amplitude) a graded vector bundle
over M , and λ = (λk)k≥0 is a sequence of operations

λk : ΛkL→ L[2− k]

a homomorphism of vector bundles. We require that for all p ∈ M , (L|p, λ|p) is a
curved L∞ algebra, i.e. λ ◦ λ = 0.

If we look at k = 0 we obtain λ0 = OM → L[2] so just a section of L2. This is
called the “curvature”. If we look at k = 1 we obtain λ1 : L2 → L3 → L4 → · · · a
twisted differential. For k = 2 we obtain Λ2L→ L a bracket. For k ≥ 3 we obtain
higher brackets.

Example 94. Suppose n = 0. Then we obtain just a manifold M . For n = 1

we obtain M
λ0=F−−−−→ L2 just a section of a vector bundle. If n = 2 then we have

M → L2 → L3 where the first map is the section/curvature and λ1(F ) = 0. To see
the brackets we need n = 3 in which case dF = 0 and d2 = [F,−].

Remark 95. LetM = (M,L, λ) be a dg manifold. ThenO(M) = (Γ(M,Sym(L[1])∨)).
Here λ corresponds to a derivation Q on O(M) satisfying Q2 = 0.

Definition 96. A morphism (f, φ) : (M,L, λ) → (N,L′, λ′) is a smooth map
f : M → N and φ = (φk)k≥1 where φk : ΛkL→ f∗L′[1−k] such that for all p ∈M
with q = f(p),

φk|p : ΛkL|p → L′|q[1− k]

is a morphism of curved L∞-algebras (this is roughly a morphism respecting the
bracket structures).

See for example Getzler’s MC homotopical perturbation theory for all of this
written out.

Now letM = (M,L, λ) be a dg manifold. Consider π0(M) := Z(F ) ⊂M closed.
This is the classical Maurer-Cartan locus of M.

Remark 97. It is an exercise to check that π0(M) = Maps(∗,M)

Take p ∈ π0(M) a classical point. We define the tangent complex of M at p to
be

TM|p = TM |p
dF−−→ L2|p → L3|p → · · · .

This is a complex of vector spaces since we are at a classical point (d2
µ = 0).

Definition 98. We say that a morphism f : M → N is étale at p ∈ π0(M) if
TM|p → TN|f(p) is a quasi-isomorphism.

We say that f : M → N is a fibration if the underlying map f : M → N is
a submersion and φ1 : L → f∗L′ is a epimorphism of graded vector bundles (i.e.
surjective everywhere). A map is a weak equivalence if it is étale and a bijection
on classical loci.

For instance the map ∅ →M is a weak equivalence if and only if π0(M) = ∅.
The restriction to an open neighborhood of the classical locus in M includes into
M and this inclusion is a weak equivalence.

One checks that we obtain a category of weak equivalences (also the 2-out-of-6
property, probably). To make this ∞-category tractable and to make the fiber
products/hom-spaces more explicit, we introduce fibrations. Indeed we now claim
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that this category of dg manifolds is in fact a category of fibrant objects. The
axioms are relatively easy to check straight from the definition, except for one.
The factorization axiom is harder to check, but it turns out it suffices to check the

diagonal M ∆−→M×M.

PM

M M×M

fib

w.e.
∆

Let’s explain the existence of such a path space. As a warm-up let’s consider M
as a manifold. Define in this case PM = Maps(I,M), which is of course infinite-
dimensional. Notice that the map M → PM in this case is not a weak equivalence.
Consider TPM the tangent bundle of the path space. Notice that if a : I → M
is a path then TPM |a = Γ(I, a∗TM) and we obtain naturally a section a′ whence
a map of dg manifolds PM → TPM . Notice that M near the constant path

M → PM yields a bijection M
const−−−→ π0(PM → TPM). As an exercise check

that the map M → PM is étale. As a result the map is a weak equivalence. Of
course PM →M ×M is a fibration so we have solved our problem, up to the fact
that we’re using an infinite-dimensional model for the path space PM . We will cut
down to finite dimensions as follows: choose a connection ∇ on TM and notice that
a path [0, 1]

a−→M is geodesic if a′ is covariant constant as a section of a∗TM with
respect to the connection a∗∇. Now define PgM to be the geodesic paths. Now
we can argue by working in small neighborhoods of M (can do this due to classical
locus argument) and using the exponential map.

26. June 22, 2018 – Ezra Getzler

Let V be a category of spaces. If you remember, we’re not going to assume it
has all finite limits. Instead we are going to carefully keep track of which limits we
do have. Recall that we have

isomorphisms ⊂ trivial fibrations ⊂ covers ⊂ fibrations.

Remark that we will want covers to be preserved by forming retracts. Our basic
examples will be categories of derived spaces of some sort.

Consider, for instance, open subsets of the derived Maurer-Cartan loci of dg Lie
algebras. In this context fibrations are given by submersions (surjections of dg Lie
algebras). Recall that the classical locus

π0(MC(L)) = MC(L).

Fix µ ∈ MC(L) and consider Lµ = (L, dµ) where dµ = d + ad(µ). One finds
that TµMC(L) = Lµ[1]. What are trivial fibrations in this context? They are
fibrations that induce isomorphisms on π0 and quasi-isomorphism of tangent com-
plexes. Covers are similar: they are fibrations which are surjective submersions on
π0 and moreover quasi-isomorphisms of tangent complexes in non-zero degrees.

Denote by sV the simplicial objects of V. This again has the structure of a
category of fibrant objects. We are going to be considering a map f : X• → Y•.
We say that f is a fibration if it is Reedy fibrant, i.e. the map

Xn → Hom(∂∆n, X)×Hom(∂∆n,Y Yn
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is a fibration in V for all n ≥ 0, and moreover that

Xn → Hom(Λni , X)×Hom(Λn
i ,Y ) Yn

is a cover in V (here n > 0 and 0 ≤ i ≤ n). To get a category of fibrant objects
we’d better cut ourselves down to only working with objects that are fibrant. An
∞-groupoid is by definition a fibrant object. Notice that the classical locus is an
∞-groupoid. k-groupoids will be ∞-groupoids that additionally satisfy

Xn → Hom(Λni , X)

for n > k and 0 ≤ i ≤ n is a trivial fibration (it is already a fibration so really the
content lies in the fact that it’s a weak equivalence). The maps between k-groupoids
are all simplicial morphisms. Now it remains to tell you what the trivial fibrations
of k-groupoids are. They are also known as hypercovers: we require

Xn → Hom(∂∆n, X)×Hom(∂∆n,Y Yn

is a cover for all n ≥ 0 (we already knew it was a fibration). With this data we find
that k-groupoids forma a category of fibrant objects. We won’t prove this, but we
point out that if X• is a k-groupoid it is crucial to understand that Hom•(∆

•, X)
is again a k-groupoid and that the map to Hom•(Λ

n
i , X) is a cover of k-groupoids.

The 2-out-of-6 axiom is required to show that the inclusion of k-groupoids into
∞-groupoids induces a full faithful embedding of the corresponding simplicial lo-
calizations (i.e. k-stacks).

Recall on Tuesday we discussed the nerve of a dg algebra

N•A = MC(C∗(E[n])⊗A).

We asserted that if Ai = 0 for i ≤ k then this is a k-groupoid. We think of this as
the classical Maurer-Cartan locus. The derived refinement of this result is

[n] 7→ MC(C∗(E[n])⊗A).

We don’t have time to talk about differential forms on Perf so let’s instead look
just at perfect complexes of amplitude zero.

NkGLN = (GLN )k = Fun([k]→ GLN ).

Let’s check Reedy fibrancy:

(GLN )2 = N2GLN → Hom(∂∆2, N•GLN ) ∼= (GLN )3.

This is what Kapranov realized: there’s no way this could be submersion.
Now notice that we have a de Rham complex of our derived stack,

Ω∗(X•) =

∞∏
n=0

Ω∗−n(Xn)

with the de Rham differential plus the differential induced by the face maps The
key theorem is that a hypercover gives a quasi-isomorphism of de Rham complexes.
Consider now

H∗(Ω∗(N•GLN )) = C[c1, . . . , cN ]

the Chern classes. The existence of the first Chern class tells you that there is a
determinant map. In particular,

c1 ∈ Ω2(N0GLN )× Ω1(N1GLN )× Ω0(N2GLN )× Ω−1(N3GLN )× · · ·
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As far as the classical locus is concerned there are no negative degree differential
forms. The two-form component is zero since it’s forms on a point. In Ω1 we
have tr(g−1dg) the Maurer-Cartan element. The second Chern class leads to the
Polykov-Wigman formula that has also been studied by Gawedski.

27. June 22, 2018 – Chris Brav

We specialize now to compactly generated dg categories C. Actually what I want
to say will make sense formally for dualizable, but I don’t know any interesting
examples. What does compactly generated mean? It means that

Ind Cc ∼−→ C

where Cc are the compact objects. Consider, now, the functor Perf, given

X 7→ Perf(X) = lim
(Aff/X)op

Perf(U)

This yields a dg category. There is a functor the other way dgcatop → PrStk which
is a right adjoint denote it A 7→MA. It is defined by

Maps
PrStk

(U,MA) ' Maps
dgcatop

(Perf(U),A)

' Maps
dgcat

(A,Perf(U)

'
r

Maps
dgcatcont

(Ind A,QCoh(U)).

The definition of this moduli space is due to Toen and Vaquié. Now there was a
bunch of stuff I didn’t follow at all.

For example consider C = Vect. Notice that MC = Perf and its k-points are
perfect k-modules. Now we need to justify why we call it moduli of objects, instead
of moduli of certain special functors.

Definition 99. We say that C a (big) dg category is smooth if

(1) it is dualizable
(2) there is a left adjoint to the evaluation functor C∨ ⊗ C → Vect. This is

equivalent to the coevaluation Vect → C ⊗ C∨ to have a continuous right
adjoint

In fact we will require more, that C ' ModR for some dg algebra R that is finitely
presented. This is a techincal thing that Toen and Vaquié use to get nice charts
on the moduli of objects. This has something to do internally in dg categories
where they are the compact objects (or something like this?). From now on such
dg categories are called finite type.

Theorem 100 (To en-Vaquié). For C a dg category of finite type, the moduli space
MC is locally Artin and locally of finite presentation (basically, the cotangent com-
plex is perfect). Moreover, for E ∈MC(k)

TEMC ' End∗C(E)[1].

Let’s make sense of this. First, for C smooth, every continuous adjunction be-
tween C and QCoh(U) is corepresented by F ∈ C ⊗ QCoh(U),

f ' HomU (F,−).



56 NILAY KUMAR

One checks this using f∨, evaluation, coevaluation, and left evaluation. So MC
parameterizes certain compact objects of C. For instance if C = QCoh(X) for X a
finite-type scheme/variety then we obtain the perfect complexes on X with compact
support. If C = Loc(X) for X some topological space, we obtain local systems of
finite rank.

What are differential forms on MC? Recall that Hochschild homology was
supposed to give us noncommutative differential forms. Moreover there is S1-
functoriality for HH∗ with respect to functors with continuous right adjoint. In
particular given such a functor f : C → D we obtain HH∗C → HH∗D. Apply to

C ε−→ Ind(Perf(C)). We get a corresponding map on Hochschild homologies,

HH∗C → HH∗Ind(Perf(MC))→ lim
(Aff/X)op

HH∗(U)

and taking S1-invariants

HC−C → HC−Ind(Perf(MC))→ lim
(Aff/X)op

HC−(U)→ lim
(Aff/X)op

HC−w (U)(p).

By the HKR theorem on an affine we have

HC−w (U)(p) ' Ωp[p]× Ωp+1
U [p+ 1]× · · ·

with the differential d+ ddR. This is exactly the complex we used to define closed
forms. Getting rid of the p,

|HC−w (U)[n− p]| ' Ap,cl(U, n).

Now given any negative cyclic chain for our category C, say of degree d,

α : k[d]→ HC−(C),

we obtain a map for each p

k[d]→ HC−(C)→ lim
(Aff/X)op

HC−w (U)(p)

and truncating and taking the underlying space we get an element of the space
| lim(Aff/X)op HC

−
w (U)(p)[−d]|, i.e. a closed p form of degree p − d on the moduli

space MC .
What we will be most interested in is degree p = 2.

Definition 101. Given a locally Artin stack X locally of finite presentation, an
n-shifted symplectic structure is

ω ∈ A2,cl(X,n)

such that under the forgetful map

A2,cl(X,n)→ A2(X,n) ' |Hom(O,Λ2T ∗(X)[n])|

say sending ω 7→ ω0, we get an isomorphism

T (X)
∼−→ T ∗(X)[n].

We expect such shifted symplectic structures whenever tangent spaces are iso-
morphic to themselves under a shift. This usually comes about from Poincaré or
Serre duality. From above, for instance,

End(E)[1]
∼−→ (End(E)[1])∗[n].
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What we want to do is provide conditions on the category C which naturally pro-
duce this (this will be the notion of a noncommutative orientation or Calabi-Yau
structure on a category).

Definition 102. Let C be smooth. Denote by id! : evL(k) ∈ C∨⊗C ' End(C) (this
is kind of an inverse Serre functor for those who know what that means).

Let’s compute Hochschild homology. Recall

HH∗(C) ' tr(idC) ' ev ◦τ ◦ coev(k).

Notice that

HH∗(C) ' Homk(k,HH∗(C)) ' Homk(k, ev ◦τ ◦ coev(k))
evL' HomEnd C(id

!, id).

In the following definition we are “trivializing the anticanonical bundle”.

Definition 103 (Kontsevich, Ginzburg). A nc orientation or Calabi-Yau structure
of dimension d on a smooth dg category C is a negative cyclic chain of degree d

k[d]→ HC−(C)

such that

k[d] HC−(C)

HH∗(C) ' Hom(id!, id)

α

[α]

such that [α] : id! ' id[−d] is an equivalence.

Theorem 104 (Brav-Dyckerhoff). If C is a dg category of finite type with nc
orientation

α : k[d]→ HC−(C)

then the induced closed 2-form of degree 2 − d on MC is nondegenerate, i.e. MC
is shifted symplectic of degree 2− d.

After T oen-Vaquié what remains is to check nondegeneracy. This follows from
a few things:

• T (MC)[−1] = ( End)(E) ' Φ(id!)

• T ∗(MC)[1] ' Φ(id)
• the map T (M) → T ∗(M)[2 − d] induced by the two-form is the same as

(up to a shift) the map Φ[α] : Φ(id!)
∼−→ Φ(id)[−d]

To understand this last map one needs to understand HKR not via formulas, but
instead via deformation theory and the geometry of the loop space.

One can then ask how to get Lagrangians in these moduli spaces. There exists a
notion of a relative orientation structure on a functor C → D such that the induced
map on moduliMD →MC gives a Lagrangian (e.g. local systems and local systems
on boundaries). We also get a map HC(C)→ Γ(MC ,O). The left is shifted Lie via
a string bracket (see Chas-Sullivan for local systems, Brav-Rozenblyum have been
studying this case) and the right is shift Poisson, and the map intertwines these
structures.
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Remark 105. Shifted symplectic geometry appears in the Q-manifold literature. It
was imported to algebraic geometry by PTVV. In the latter they construct lots of
examples on mapping stacks. We pick up some of their examples, miss some, but
have some that they don’t have. This is a kind of noncommutative AKSZ.

This is the beginning of interesting stuff, so we’ll stop here.

28. June 22, 2018 – Kai Behrend

Recall that the category of dg manifolds consists of triples (M,L, λ) where L =
L2 ⊕ · · · ⊕ Ln+1 is a graded vector bundle and operations λk : ΛkL→ L[2− k] for
k ≥ 0. These operations together defined for us a bundle of curved L∞-algebras.
A map of dg manifolds recall was a map of manifolds together with a morphism
of graded vector bundles L → f∗L′ that is a bundle of morphisms of curved L∞-
algebras. Recall that the classical locus of M is the topological space Z(λ0) ⊂M .
One could put more structure on this, such as a C∞-ring, etc. but we don’t want to
do that here. Given a point p ∈ π0(M) we had a complex of vector spaces TM|p.
Finally we said thatM→N is étale at p ∈ π0(M) if TM|p → TN|f(p) is a quasi-
isomorphism. The weak equivalences of dg manifolds are those maps which are étal
and induce bijections on π0. This is most probably equivalent to O(N ) → O(M)
being a quasi-isomorphism. Fibrations are defined to have the underlying map of
manifolds to be submersions and the map of bundes φ to be an epimorphisms.

To construct factorizations of maps (we want a category of fibrant objects) we
needed to construct path spaces. Last time we sketched the case of M = M
where we chose a connection on TM and defined the geodesic path space PgM ,
the sufficiently short geodesic paths in M . The factorization of the diagonal map
M → M ×M is then given by embedding M as the constant path in PgM and
then evaluating at t = 0 and t = 1 (roughly speaking this is just constructing a
tubular neighborhood of the diagonal in M ×M). To give PgM the structure of a
dg manifold we need a graded vector bundle over it: consider (TM)const the bundle
over PgM with fiber over a ∈ PgM the covariant constant sections in Γ(I, a∗TM) ∼=
TM |a(0) (in degree zero). Notice that this bundle has a canonical section which is
the derivative of the path. One then checks that the map M→ PgM is étale and
a weak equivalence. The evaluation maps are easily checked to be fibrations.

Example 106. Suppose X,Y ⊂ M are submanifolds. Then the derived intersec-
tion of X and Y in M is the homotopy fiber product X ×hM Y . some argument
that I didn’t understand using the path space. Roughly look at

X →M ← PM →M ← Y

and take three appropriate pullbacks But the point is that we end up with Pg(X,Y ),
the space of sufficiently small geodesic paths in M starting on X and ending at Y .
This is the base – what’s our vector bundle? It will be TMconst with section a 7→ a′.
Notice that

dimXh ×M Y = dimX + dimY − dimM.

So far this was all for just a manifold M . What about the general case M.
We want a factorization M → PM → M ×M. The general case is formally
very similar to the baby case – we use connections to cut down the path space to
something finite-dimensional. The underlying manifolds of the derived path space
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will be the same as the construction above. Now take a ∈ PgM and consider as the
fiber:

TM |a(0) = (TM)constdt⊕ Γ(I, a∗L⊗ Ω∗I) =: L̃

where here Ω∗I = OI ⊕ Ω1
I and the first term is in degree 2. The operations are

given as follows:
µ = D + a∗λ+ a∗(∇λ)dt

where D is the canonical curvature on (TM)const and a∗λ is base extended from
OI to O ⊕ Ω1 and here

∇λk : TM ⊗ ΛkL→ L[2− k].

We have one more operation, which is

δ = a∗∇ : a∗L→ a∗Ldt.

Now (L̃, δ) is a complex of vector spaces and (L̃, δ + µ) is a curved L∞-algebra.
Now we use homotopical perturbation lemma due to Fukaya (for a good reference

see the paper of Getzler mentioned yesterday). Given

L̃→ L̃[−1], η2 = 0, ηδη = η,

then δη, ηδ are orthogonal idempotents on L̃ and we obtain a splitting

L̃ = im(δη)⊕ im(ηδ) + (ker(δη) ∩ ker(ηδ).

Call the intersection of the kernels H. H includes into L̃ and we have a projection
π : L̃→ H, π : 1− [δ, η]. Hence H and L are homotopy equivalent complexes. The
theorem now is that there exists a curved L∞ structure on (H, δ) and a morphism
of curved L∞-algebras

φ : (H, δ + θ)→ (L̃, δ + µ)

(in fact an equivalence). φ is the unique solution to the fixed point equation

φ = ι− ηλ ◦ φ.
Checking that this structure comes through together to get a L∞ structure is
straightforward.

What is η? We send Γ([0, 1], a∗L)dt→ Γ([0, 1], a∗L) sending α(t)dt 7→
∫ t

0
α(u)du−∫ 1

0
α(u)du. So the idea is to work with H instead of L̃, because it is a finite di-

mensional quasi-isomorphic complex that we can actually work with. Of course the
cost is that we had to transfer structures.

Example 107. Suppose we have a homomorphism of complexes of vector bundles
over M . This is an example of a map of dg manifolds. Fiorenza and Manetti
examined this case in detail and explicitly solved this recursion: one finds that the
fiber is the shifted mapping cone Cφ[−1] with no higher operations. If L,L′ have
bracket then Cφ already has higher brackets.
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