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These notes were written for a reading course with Professor Eric Zaslow on the
basics of symplectic geometry. They follow Mcduff/Salamon quite closely. These
notes are rather rough, and in several places woefully incomplete: caveat lector.’

1. WEEK 1
1.1. The cotangent bundle.

Date: Fall 2015.
ladd references!
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Definition 1. Let X be a smooth n-manifold and 7 : M = T*X — X be its
cotangent bundle. We define the canonical one-form 6 € Q!(M) as follows. For
any p = (z,€) € M, set
Op(v) = §(dom(v)).
The one-form 6 is canonical (or tautological) in the sense that its value at a point

is simply given by the covector determined by that point. More precisely, we have
the following characterization.

Proposition 2. The canonical one-form 6 is the (unique) one-form such that for
every X € QH(X), \*0 = \.

Proof. We compute, for v € T, X,
(A"0)p(v) = Ox(p) (dpA(v))

= Ap(dp(m 0 A)(v))

= AP(”))
where we have used the fact that X is a section of 7, i.e. mo A = idx. Uniqueness
is easily checked. (I

Definition 3. The canonical symplectic form w € Q?(M) is now defined to be
the exterior derivative

w = —db,
of the canonical one-form. To be symplectic, w must be closed and nondegenerate.
That it is closed is obvious.

Proposition 4. The form w € Q?(M) is nondegenerate and thus defines a sym-
plectic structure on M = T*X .2

Proof. For w to be non-degenerate, it must be nondegenerate at each point p € M.

Given coordinates p = (x,€) = (x!,...,2",&,...,&,) in a neighborhood of p, we
can compute
0 (x,6) (Ulaaxl + v 36;) =¢ <vi 6(331)
= &v'

and hence ,

0 = &dx'.
Taking an exterior derivative, we find that

w = —db
= dz' A dE;.

Fix v € T, M and suppose that t,w, = 0, i.e. wp(v,w) =0 for all w € T, M. In
coordinates, this implies that

byi %.;.m%(dxi NdE;) = vid& — v'dz’
zJ &7
= O’

and hence that v* = v* = 0, i.e. v = 0. We conclude that w, is nondegenerate at
each p € M. O

215 there a coordinate invariant proof?
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Remark 5. Note that a 2-form w on a manifold M is nondegenerate if and only if
w™ is nowhere vanishing. Fix p € M and consider the vector space (T,M,w,). If
wp is nondegenerate, we can find a symplectic basis for T, M, and so wj evaluated
on (ug,...,Un,V1,...,V,) is nonzero, whence wy is not zero on V. On the other
hand, suppose wy, is degenerate, i.e. there is a v # 0 such that w,(v,w) = 0 for
all w € V. Choosing a basis vy,...,vs, for V such that v; = v, we find that
wp(v1,...,v2,) = 0 and hence w, =0 on V.

We conclude that every symplectic manifold is orientable.

It is easy to see that w provides an isomorphism ¢ : T,X — T*X between
tangent and cotangent spaces at each point x € X: since w, is nondegenerate, the
linear map ¢ : v — wy (v, —) is injective and hence bijective. In fact, we can say
more.

Proposition 6. The metric w induces an isomorphism of vector bundles v : TX =
"X =M.

Proof. Recall that an isomorphism in the category of smooth vector bundles is a
smooth bijection® ¢ such that the diagram

X\_/

commutes and for each x € X, the restriction ¢, : T, X — T;X is linear. The
map ¢ : TX — T*X taking (z,v) — (z,w(v,—)) fits into the diagram above and
is bijective and fiberwise linear. Moreover, ¢ is a smooth map, as is seen by its
coordinate description computed above. ([

Definition 7. A Hamiltonian is a smooth function H : M = T*X — R. we
define the Hamiltonian vector field vy associated to H to be the vector field on
M satisfying

lyyw =dH.
The (local) flow F': (—e,e) x M — M determined by vy is called the Hamiltonian
flow.*

Note that an integral curve =, : (—&,&) = M of vy can be thought of as the
trajectory of a physical state in phase space. Indeed, Hamilton’s equations are
given

ozt B OH
ot 0§
o&  OH
ot oxi’

which is precisely the condition that +;,, (t) = (v#),). Moreover, H is constant
along the Hamiltonian flow, as

dH (ver) = (tyyw)(vy) = w(vg,vg) =0,

3Existence of a smooth inverse is automatic (reference?).
s this a global flow? Does it depend on X7
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i.e. vy is tangent to the level sets of H. In a physical system, where H is the energy
functional on phase space, this phenomenon is the law of conservation of energy.

Proposition 8. The Hamiltonian flow is a symplectomorphism, i.e. Ffw = w.”

Proof. We use the following trick:
t
d
/ —Ffwdt=Fjw—w

since Fy = idjs, and hence F} is a symplectomorphism if and only if the integrand
is zero. But

d d d

CRw="| Fw=F*| Fr

at Y T ds| e T |
=F;L,,w,

and Cartan’s magic formula,
Loygw = diy,w ~+ Ly, dw,
tells us that £,,,w = 0 since ¢, ,w = dH is closed, as is w. O

Corollary 9 (Liouville’s Theorem). The volume form w™ on M = T* X is preserved
by the Hamiltonian flow.

1.2. Geodesic flow as Hamiltonian flow. We wish to discuss geodesics and ge-
odesic flow. For this, we need the concept of connections and covariant derivatives.®

Definition 10. A connection on a vector bundle £ — X is an R-linear map
V:T'(X,E) - I'(X,E®T*X) such that the Leibniz rule
V(fo)=(Vo)f+o®df,
for all f € C>*°(X) and 0 € T'(X, E).
Theorem 11. Given a Riemannian manifold (X, g), there exists a unique connec-
tion on m: TX — X, known as the Levi-Civita connection, satisfying
(i) symmetry:
VxY -VyX - [X,Y] =0,
for XY e (X, TX);
(i) compatibility with g:
for XY, Z e (X, TX).
Definition 12. Let v be a vector field on (X, g); we define the covariant deriv-
ative of v along a smooth curve c: I — X to be the vector field
Do
dt

where V is the Levi-Civita connection. Explicitly, if we write v = v'9/0z° and
c(t) = (e1(t), - .-, cn(t)),

Dv dvt 9 de; ;. O

— = — =+ v’y .

dt - dt oz? — dt = Y oxk

= Vic/dt,

51g there a better proof?
6Reference do Carmo.
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Here Ffj are the Christoffel symbols of V, determined by

Va/axtm Z ij 8:ck

We say that c is geodesic at some t € [ 1f D/dt(dc/dt) = 0 at t, and that c is
geodesic if it is geodesic at all t € I. In coordinates, the condition for ¢ to be
geodesic is given by a system of second-order differential equations:

4dcjdck
= -0
dt2 +Z Ik dt dt ’
fori=1,...,n.

For the rest of the section, assume (X, g) is Riemannian and we fix the Hamil-
tonian H : M =T*X — R as

Hw,8) = 5|6

i.e. consisting of only a kinetic term. Here we are implicitly using the nondegeneracy
of g to associate &, with its corresponding vector (or, equivalently, using g—1).

Proposition 13. The Hamiltonian flow on M = T*X is dual to the geodesic flow
on TX. In other words, the integral curves of the Hamiltonian vector field vy
associated to the Hamiltonian above project to geodesics of g on X.”

Proof. It suffices to show, in coordinates, that Hamilton’s equations (i.e. the con-
dition for being on the integral curve) yield the geodesic equations above after the
necessary dualization. Note first that in coordinates the Hamiltonian becomes

For convenience we will denote the components of an integral curve as *(¢). Hamil-
ton’s equations yield
dz’ 0
jkfj gk
dt 851

, 1,
= *gjk@'jfk + §gjk€j5ik

2.,
=g"¢;
d&; 0
dit T ox ( J’“@&)
1 0g7k
= 2 ag i 6]5/6

Differentiating the first equation with respect to ¢ and using both of Hamilton’s
equations yields

d?zt  0g' da® im A&m
iz " ok St W
0 0
= gkl <a k:g ) Elfj (axm ) §7L£7

7Is there a coordinate-free proof? See Paternain’s book.
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Next, differentiating the identity g/ g;, = d., it easy to see that

0 0
(%Z_gkl _ _glagkb@gab_

Using this, contracting indices, and using the first Hamilton’s equation to dualize
&’s into dx/dt’s, we find

d*z a0 de*dxt 1, ([ 0 dz® dzt
az Y (axkglb> ar a2 (ammg) dt dt
1 4, 0 de¥dzt 1 ., (0 dz® dax!

= *59 (ngb> o dt 59 (Mgkb) ar dr

1 imf( O das dat
+ 59 (Wgts> gt dr
o daP dat
= TR A
as desired. 0
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2. WEEK 2
2.1. Darboux’s theorem.

Theorem 14 (Darboux). Let (M,w) be a symplectic 2n-manifold. Then M is
locally symplectomorphic to (R?™, wgan).

We prove Darboux’s theorem using the following stronger statement.

Theorem 15 (Moser’s trick). Let M be a 2n-dimensional manifold and Q C M be
a compact submanifold. Suppose that wi,ws € Q?(M) are closed 2-forms such that
at each point q of Q the forms wy and wi are equal and nondegenerate on Ty M.
Then there exist neighborhoods Ny and N1 of Q and a diffeomorphism v : Ny — N
such that ¥|g =idg and Y*wi = wy.

Proof. Consider the family of closed two-forms
wy = wp + t(wr — wp)

on M for t € [0,1]. Note that w¢|g = wo|g is nondegenerate and hence there
exists an open neighborhood Ny of @ such that w;|y, is nondegenerate.® Suppose,
for now, that there is a one-form o € Q'(Ny) (possibly shrinking Np), such that
olrom = 0 and do = wy —wp on Ny. Then

wy = wo + tdo
and we obtain by nondegeneracy a smooth vector field X; on Ny characterized by
Lx, Wt = —0.
The condition o7,y = 0 implies, again by nondegeneracy of w;, that X¢|q = 0.
Now consider the initial value problem for the flow ; of X4,
d
—y = X0
a (i oYy
o =1id.
This differential equation can be solved uniquely for ¢ € [0, 1] on some open neigh-

borhood of @ contained in Np, call it again Np.” Note that v¢;|g = idg since
Xilg = 0. We compute now that

d d

a’(/}z‘u% = wz (dtw;f + Etht>
=} (do + duvx,wt)
=0.

Hence 9¥fwi = Ygwo = wp. Thus the desired diffeomorphism is iy and the desired
neighborhoods are Ny and N;. The above argument is known as Moser’s trick,
and is extremely useful in symplectic geometry.

It remains to construct a smooth one-form o satisfying o|r,ns = 0 and do =
w1 —wp. If Q were a point (or more generally, diffeomorphic to a star-shaped subset
of Euclidean space), we could simply use the Poincaré lemma; in general, however
the construction is as follows. Fix any Riemannian metric on M and consider the

SWhy?
IWhy?
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restriction of the exponential map exp : TM — M to a neighbhorhood U, of the
zero section of the normal bundle TQ+ — M:

U ={(q,v) eTM | g€ Q,v € Tqu, lv| < e}.

Recall that exp becomes a diffeomorphism for e sufficiently small, so we choose &
such that Ny = exp(Ue) is contained in the neighborhood of @ above on which w,
is nondegenerate. Define now a family of maps ¢; : Ng — Ny for t € [0, 1] by

¢i(exp(g, v)) = exp(g; tv).

Note that ¢; is a diffeomorphism onto its image for ¢ # 0. Moreover, ¢;|g = idg,
¢0(Np), and ¢1 = idn,. If we now write 7 = w; — wy, we find that

poT =0
sir =7,

since 7 = 0 on T M. Now, for ¢t € (0, 1], we define a family of vector fields,

, = <jt¢t> 0 677,

Then for any 6 > 0,
bd
Q1T — O3T :/ %dﬁdt = /gb?ﬁyﬁdt
b )
1
- / 67 (duy 7)dt
b

1
:d/é 65 (1, 7 dt

Clearly ¢i7 — ¢ = 7 — ¢}7 approaches 7 as § — 07, so we find that

1
T= d/ oy (Lty,T)dt.
0
Defining
1
o :/ oy (Ly,T)dt,
0

we find that 7 = w; —wp = do and o|7,n = 0 because ¢tlg =1dg and 7 = 0 on @Q,
forcing the integrand to vanish on TgM. Hence o is the one-form required above
for Moser’s trick, and we are done.'’ ([

The proof of Darboux’s theorem is now straightforward: we choose a coordinate
chart ¢ so that ¢*w is equal to the standard form on a subset of R?" at a single
point, and then apply Moser’s theorem with @ equal to the chosen point.

Proof of Darbouz’s theorem. Let ¢ € M and fix a symplectic basis {u;,v;} for the
symplectic vector space (T, M,w,). Fix any Riemannian metric on M and pick an
open U > 0 small enough such that exp restricted to U C T, M is a diffeomorphism

10VVhy is o smooth?
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and hence a chart (z,y;) =exp: U C R*™ - M (i = 1,...,n) such that 2(p) =
yi(p) = 0. Now we can compute, for example,

exp* g 0 . 0 . 0
xp*wy | =—, =~ | =w, | exp, =—,exp, =—
p P (93;‘3 I 3yk P p* 61‘37 p* 8yk
= wp (uj, k) = Gjk,
to check that exp*w, = (wp)o where wq is the standard form on ToU. Here we
have used the fact that exp, = id at 0 € U. Applying Theorem 2.1 to U with
Q = 0 € U, we obtain a diffeomorphism v of (some possibly smaller) U such
that ¥* exp*w = wp on U. But now exp oy provides a symplectomorphism in a

neighborhood of ¢ to a neighborhood of R?" pulling w back to the standard form
wo- [l
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3. WEEK 3
3.1. Submanifolds of symplectic manifolds.

Definition 16. Let (V,w) be a symplectic vector space. We define the symplectic
complement U“ of a subspace U C V as

U°={veV]|w,u)=0forall uecU}.
Lemma 17. For any subspace U C V, U =U and
dimU 4+ dimU® = dim V.

Proof. Nondegeneracy of w yields an isomorphism ¢,, : V' — V* which identifies U~
with U+ = {v € V* | v(u) = 0 for all u € U}. The result now follows from the fact
that dim U + dim U+ = dim V. O

Definition 18. Let (M,w) be a symplectic manifold. A submanifold @ C M is
called symplectic, isotropic, coisotropic, or Lagrangian if for each ¢ € @), the
linear subspace T,Q = V; of (T,M,w,) is

(a) symplectic: V, N V" =0,

(b) isotropic: V, C V4™,

(¢) coisotropic: V;* C V,

(d) Lagrangian: V, = V",

respectively.

Remark 19. Note that Q C M is Lagrangian if and only if the restriction of w to
Q is zero and dim @ = dim M/2.

Example 20. Let X be any manifold, and (M = T*X,w) be its cotangent bun-
dle with the usual symplectic structure. Recall that w = —df, where 6:(v) =
£(dym(v)).'t In coordinates, if (z%,£%) are coordinates for M, we can write w =
dxt A dEE.

It is then easy to see that the fibre T X C M is Lagrangian, as

, . 0 0 0
0= (dz* N dE") (aj Rk 85’“ + T )

= QiCi,

forces ¢; = 0.
Similarly, the zero section I'y C M is Lagrangian, as

o:(dxiAdgi)< 9 8(2k+01 0 )

4 i 8 9
= a;b;,

forces b; = 0.

N Gan we do this coordinate-invariantly?
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More generally, given a submanifold Q C L, the annihilator
TQ* ={(¢q,v) €T*L | ¢ € Q,V|1,0 = 0}

is Lagrangian.

Example 21. Let (M,w) be a symplectic manifold. The product M x M can
be given a symplectic structure w’ = amfw + Brijw for a,f € R. Consider in
particular the case of « = 1,8 = —1. Then it is clear that M x {m} and {m} x M
are symplectic submanifolds. Moreover, the diagonal A C M x M is Lagrangian,
as

0= ((u ), (v, w))
= w(u,v) — w(u, w)
= w(u,v—w)

and hence v = w, as desired.

Example 22. Let S C (M,w) be a codimension 1 submanifold. Then S is
coisotropic. Indeed, fix s € S, and note that 7,5 C T,M is codimension one.
By Lemma 17, T,S“* is a one-dimensional subspace. Pick any vector v € T5S5%+;
v spans the entire symplectic complement, and hence if v is not in T55%, T,.5 N
T;5% = 0 and TsS is symplectic and thus even-dimensional. This is a contradic-
tion, and hence TS must be coisotropic.

Proposition 23. The graph T'y, C T*X of a one-form is Lagrangian if and only if
o 1s closed.

Proof. Note that I', is defined to be the image of the embedding o : X — T*X.
Then dimI', = n, so it remains to show that w restricts to zero on I', if and only
if o is closed. Using Proposition 2, we compute

do=do*0 = o*df = —0c*w,

which yields the desired statement, as c*w = 0 on X if and only if w = 0 on Ty,
by virtue of o being an embedding. |

With these definitions out of the way, we present a number of theorems charac-
terizing neighbhorhoods of special submanifolds of symplectic manifolds.

Theorem 24 (Symplectic neighborhood theorem). Let (Mo, wo), (Mi,w1) be sym-
plectic manifolds with compact symplectic submanifolds Qq, Q1 respectively. Sup-
pose there is an isomorphism ® : TQE — TQY of symplectic normal bundles cov-
ering a symplectomorphism ¢ : (Qo,wo) — (Q1,w1). Then ¢ extends to a symplec-
tomorphism ¥ : (N(Qo),wo) — (N(Q1),w1) such that di induces the map ® on
TQS.

Proof. We use implicitly throughout that since @ is symplectic, there is an isomor-
phism TQ% — TQ" . Let expy, exp; be diffeomorphisms mapping neighborhoods of
the zero section in the normal bundle to neighborhoods of Qg, @1 in X, respectively.
Then we obtain
¢' = exp; o® o exp;

a diffeomorphism between these neighborhoods of @y and Q1. Now ¢*w; and wq
are two symplectic forms on My whose restrictions to Qg agree. Now ¢’ extends to
the desired v by Theorem 2.1. O
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Theorem 25 (Lagrangian neighborhood theorem). Let (M,w) be a symplectic
manifold and let L C M be a compact Lagrangian submanifold. Then there exists
a neighborhood N(I'g) C T*L of the zero section I'y, a neighborhood U C M of L,
and a diffeomorphism ¢ : N(Tg) — U such that ¢*w = —df and ¢|, = id, where 6
is the canonical one-form on T* L.

We postpone the proof of this theorem until after the discussion of complex
structures.

3.2. Contact manifolds. Let X be a differential manifold and H C TX be a
smooth hyperplane field, i.e. a smooth subbundle of codimension one. Then, locally
on some open U, we can write H = ker «, for o € Q;(U). In fact, if we assume
that H is coorientable, we can extend U to all of X.'? We will assume for what
follows that H is coorientable.

Definition 26. Let X be a manifold of odd dimension 2n+1. A contact structure
on X is a hyperplane field H = ker a« where the top-dimensional form a A (da)™
is nowhere vanishing. We call « a contact form, and the pair (X, H) a contact
manifold.

Remark 27. Suppose we have a, o’ € Q'(X) such that H = kera = kero/. Then
« is a contact form if and only if o’ is. This is because the condition that «, o’ cut
out H requires o/ = fa for some nonzero f : X — R.

Remark 28. In the language of distributions, H can be described as a codimension
one distribution that is maximally non-integrable in the following sense. Recall
that a distribution on X is said to be integrable if every point p of X is contained
in a integral manifold of H, i.e. in a nonempty immersed submanifold N C X such
that T, N = H,. The Frobenius theorem tells us that H is integrable if and only if
H is involutive, i.e. H is closed under the Lie bracket of local sections. Now, since

da(X,Y)=Xa(Y)-Ya(X) — ofX,Y],

we find that H is integrable if and only if da = 0 on H. Thus asking for da to be
nondegenerate on H forces the distribution to be “as non-integrable as possible.”

Indeed, we obtain the above definition of a contact structure by noting that da
is nondegenerate on H if and only if a A (da)™ is nowhere vanishing, as follows. By
remark 5, da is nondegenerate on H if and only if (da))™ is nowhere vanishing, but
this is simply equivalent to asking that a A (da))™ be nowhere vanishing.

Armed simply with the definition of a contact manifold, one might think that
contact geometry is somewhat obscure. We provide the following list of examples
as evidence that contact manifolds are actually quite common.

Example 29. Let X = R?"*! with coordinates (z!,...,2" y',...,y", 2). The
one-form
a=dz+ z'dy’
is a contact form, as
aA(da)® =dz Adzt Ady' Ao Ada™ A dy™,
which is nowhere vanishing. We define the standard contact structure on R?*+! to
be H = ker a.

12\Why?
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For the next few examples the following lemma will be useful.

Lemma 30. Let (M,w) be a symplectic manifold of dimension 2n. A wvector field
Y on M satisfying Lyw = w is called a Liouville vector field. In this case,
o = tyw is a contact form on any hypersurface Q@ C M transverse to Y (i.e. at
any point p, T,Q and Y, span T,M ).

Proof. Cartan’s magic formula in this case tells us that w = diyw, and hence

aA (da)" ! = 1yw AW

=1y (W")/n.
Now, since w™ is a volume form on M, we find that o A (da)" ™! is a volume form
when restricted to the tangent bundle of any hypersurface transverse to Y. O

Example 31. Consider M = R* with its usual symplectic form w = da' A dy* +
dx? A dy?. The vector field

1 0 0 0 0
y— - 9 19 20 50
2 (9618171 Ty oyt e Ox? Ty oy?
is clearly transverse to the sphere S® given by (z1) + (y1)? + (2%)? + (y?)? = 1. It
is a straightforward computation to check that Y is Liouville, using the identity
(Lyw)(v,w) = Ly (w(v,w)) — w([Y,v],w) — w(v, [Y,w]).

We conclude, using the previous lemma, that S3 is a contact manifold, with a
contact structure ker tyw. This example is easily extended to show that S2"*+! has
a contact structure.

Example 32. Let (M, g) be a Riemannian n-manifold. We define the unit cotan-
gent bundle
ST*M = {(p,€) € T"M | &2 = 1} € T*M.

The unit cotangent bundle is a manifold of dimension 2n — 1 as it can be written as
the level set of a Hamiltonian H(p, &) = |¢,|2/2. Moreover, it is a sub-fiber bundle
of the cotangent bundle, with fiber S"~!. We claim that the canonical one-form on
T*M is a contact form for ST*M. Indeed, let Y be a vector field on T*M given
by tyw = 0. Then Y is Liouville: d(1yw) = df = w. In coordinates, Y = p‘d/dp’,
and hence is transverse to ST*M. Note that if M is compact, so is SY*M and in
this case ST*M is an example of a compact contact manifold.

Example 33. Let (M, H = ker ) be a contact manifold. Then, if 7p; : M x R —
M is the projection onto the second factor, we claim that (M x R,w = d(e'7},))
is a symplectic manifold. Indeed, if M has dimension 2n — 1, we compute
W' = (e'dt A o+ Thpda)™

=ne"tdt ATy A iy (da)™ !

=ne™dt Ay (a A (da)" )

#0.
We call (M x R,d(e'm;,;«)) the symplectization of (M, «). Note that 9/0t is a
Liouville vector field for w'® and M C M x R is a hypersurface transverse to 9/0t.

13compute!
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Definition 34. A contactomorphism from (M;, Hy) to (Ms, Hs) is a diffeomor-
phism f : My — M such that df(H,) = Hs. Equivalently, if H; = ker a; and
Hy; = ker as then we require f*as = ga; for some nowhere vanishing function

g: M — R\ {0}.
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4. WEEK 4
4.1. Symplectic linear group and linear complex structures.

Definition 35. Let (V,w) be a symplectic vector space. We denote the group of
symplectomorphisms from V to itself as Sp(V,w), the symplectic linear group.
In the case of the standard symplectic structure on R?" we write the group as

Sp(2n).
Lemma 36. A real 2n X 2n matriz ¥ is in Sp(2n) if and only if
U = J,

where
0o -I,
Jo = (In 0 ) € Sp(2n)

Proof. Let u;, v; be a symplectic basis for V. For z,y € V write z = (a,b),y = (¢, d)
for a,b,c,d € R™. Then

w(z,y) = a'd' — bic' = —x " Joy.
Clearly ¥*w = w if and only if U T JoW = J,. O
Definition 37. Let V be a vector space. A complex structure on V is an
automorphism .J : V — V such that J? = —idy. We denote the set of all complex

structures on V by J(V). Now suppose (V,w) is a symplectic vector space. We
say that a complex structure J is compatible with w if

w(Jv, Jw) = w(v, w)
for all v,w € V, and
w(v,Jv) >0
for all nonzero v € V. We denote the set of all compatible complex structures on
(V,w) by J(V,w).
Lemma 38. Let J € J(V,w) be a compatible complex structure on (V,w). Then
g7(v,w) = w(v, Jw)
defines an inner product on V.
Lemma 39. Let (V,w) be a symplectic vector space and J be a complex structure
on V. Then the following are equivalent:
(a) J is compatible with w;
(b) the bilinear form gy : V xV — R defined by
g7 (v, w) = w(v, Jw)

is symmetric, positive-definite, and J-invariant.
(c) if we view V as a complex vector space with J as its complex structure, the
form H :V xV — C defined by

H(v,w) =w(v, Jw) + iw(v, w)

is complex linear in w, complex antilinear in v, satisfies H(w,v) = H(v,w),
and has a positive-definite real part. Such a form is called a Hermitian inner
product on (V,J).
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Proof. That (a) implies (b) is clear from Lemma 38. For (b) implies (c), note first
that the real part of H is simply gs and hence is positive-definite. For linearity, we
compute

H(Jv,w) = w(Jv, Jw) + iw(Jv,w)
= gs(Jv,w) —igy(w,v)
= gj(w, Jv) —igs(v,w)
= —iH (v, w),

and

Hv, Jw) = —w(v,w) + iw(Jv, Jw)
= —w(v,w) +igs(Jv,w)
= —w(v,w) + iw(v,w)
=iH(v,w),

w(v,

w(v,

as desired. Finally, note that
H(w,v) = w(w, Ju) + iw(w, v)

= w(v, Jw) — iw(v, w)
= H(v,w).
For (c¢) implies (a), w(v, Jv) > 0 because the real part w(v, Jw) is by hypothesis
positive-definite. Moreover, w(Jv, Jw) = im H(Jv, Jw) = im H(v,w) = w(v,w).
O

The following result shows that all linear complex structures are isomorphic to
the standard complex structure.

Proposition 40. Let V be a 2n-dimensional real vector space and let J € J(V).
Then there exists a vector space isomorphism ® : R*™ — V such that

Jb = dJp.

Proof. Consider the extension JC of .J to the complexification V¢ =V @ C = V
given by J ® 1. Clearly J® is a complex structure on VC and thus has eigenvalues
+i. We obtain a direct sum decomposition VC = E+ @ E~ of the +i eigenspaces
respectively, i.e. JC| g+ = +il. Clearly dim¢ E¥ = n. We claim that a basis
wj = uj + iv; for ET yields a basis uj,v; for V. It suffices to show that these
vectors are linearly independent. Since w; is a basis for E7,

n
> (aj +ibj)(u; @ 1+ v; @) =0
j=1
for a;,b; € R implies that a; = b; = 0 for all j. Suppose there exist o, 8; € R
such that

Zajuj + Bj'Uj =0.

Jj=1
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Now since w; € ker(I —iJ), a straightforward computation reveals that Ju; = —v;
and Jv; = u;. Applying J to the above equation, we obtain

n
E ﬂju]' — V5 = 0.
j=1

Then, taking a; = 3;,b; = o;, we find that

n n
Zﬁ]—i—za] (u; @1+v; Q1) Zﬁjuj—ajvj ®1+ Zﬁjvj—i—ozjuj ®1i
j=1 j=1 j=1

=0.

Linear independence of the w; now forces o; = 3; = 0. Hence u;,v; forms a basis
for V.
The required ® : R?® — V can now be written explicitly as

n

¢($17"'7xn7y17""y’ﬂ) = Z(‘rju] _yJUJ)

Jj=1
This map is clearly an isomorphism; moreover, if = (71,...,7p,51,...,8,) € R?"
then
JOxr = —s1u1 — v — - — Sply — TRV, = Py,
as desired. O

Remark 41. Define an action of GL(2n,R) on the set J(V) by g-J = g~ 'Jg. By
Lemma 40, GL(2n,R) - Jo = J(V), i.e. the orbit of Jy is the entire set. More-
over, since GL(n,C) is naturally embedded (as a Lie subgroup) in GL(2n,R) as
{A € GL(2n,R) | JoA = AJy}, the stabilizer of Jy is GL(n,C)."* We conclude
that J(V) can be given the structure of a smooth manifold such that J(V) =
GL(2n,R)/ GL(n,C).

The following result shows that the choice of complex structure compatible with
a fixed symplectic form on V is canonical up to homotopy.

Proposition 42. The set J(V,w) of compatible complex structures is naturally
identified with the space P of symmetric positive-definite symplectic matrices. In
particular, J(V,w) is contractible.

Proof. By fixing a symplectic basis for V' we may assume that (V,w) = (R?",wp).
By the proof of Lemma 36, we note that J € Aut(R?") is a compatible complex
structure if and only if the conditions

J? = —idgen,
Jo=J"JolJ,
0< —vJyJv,

hold (for v # 0). Set P = JyJ. P is symmetric, since
(JoJ)" = =T "y =T JoJ? = JoJ,

MThe embedding is given by replacing each entry a 4 bi with a block of the form (Z _ab).
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as well as positive-definite, and symplectic. Moreover, it is easy to check that if any
matrix P has these three properties, then J = —Jy P is a compatible complex struc-
ture. Hence J(V,w) is in bijective correspondence with the space P of symmetric
positive-definite symplectic matrices. It remains to show that P is contractible.
Suppose, for now, that if P € P then P* € P for all &« > 0, « € R. Then the map
h:[0,1] x P — P given by h(t, P) = P~ is a homotopy from idp to the constant
map P +— idy, and we are done.

We now show that if P € P then P* € P for all @« > 0. It is easy to see that P% is
symmetric and positive-definite. It remains to show that wo(P*v, P*w) = wp (v, w)
for all a > 0. Decompose R?" into eigenspaces V5 for eigenvalues A of P. Note
that for a symplectic matrix P, if A, \ are eigenvalues such that A\ # 1 then
wo(z,2") = 0, where z, 2" are the eigenvectors of A, X', respectively:

M wo(z,2") = wo(Pz, P2') = wo(z,2).
Now, since V), is also the eigenspace for the eigenvalue \* for P%, if z € Vy,2' € Vi,
wo(PY2, P*2") = (AN)%wo(z, 2").

Writing any v, w € R?" in the basis of eigenvectors for P®, we find by linearity, and
the remarks about A, A" above, that wo(P*v, P*w) = wy(v, w) for all o > 0. O

Often it is enough to consider a slightly weaker notion of compatibility.

Definition 43. A complex structure J € J(V) is called w-tame if w(v, Jv) > 0
for all nonzero v € V. The set of all w-tame complex structures on V is written
Jr(V,w). Note that J.(V,w) is an open subset of J(V) = GL(2n,R)/GL(n,C)
(as per Remark 41).

In this case, we note that g;(v,w) = (w(v, Jw) + w(w, Jv))/2 defines an inner
product on V', for all J € J,(V,w). We note that there is an analog of Proposition
42 for w-tame complex structures.

Proposition 44. The space Jr(V,w) is contractible.
Proof. See, for instance, McDuff/Salamon or Gromov. (]
4.2. Symplectic vector bundles.

Definition 45. A symplectic vector bundle (F,w) over X is a real vector bundle
7w : E — X together with a smooth symplectic bilinear form w € I'(X, E* A E*), i.e.
a symplectic bilinear form on each E, that varies smoothly with . A complex
structure on 7 : £ — M is a bundle automorphism J : E — FE such that
J? = —idg. We say J is compatible with w if the induced complex structure on E,
is compatible with w, for all x € X. We thus obtain a symmetric, positive-definite
bilinear form g; € T'(X,Sym? E*), and we call the triple (E,w,g;) a Hermitian
structure on E.

Theorem 46. Let E — X be a 2n-dimensional vector bundle. For any symplectic
structure w on E, the space of compatible complex structures is nonempty and
contractible. For any complex structure J on E, the space of symplectic structures
compatible with J is nonempty and contractible.

Proof. See McDuff/Salamon.'® O

L5Understand this!
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We now prove the Theorem 25, the Lagrangian neighborhood theorem, with the
help of the following lemma.

Lemma 47. Let J € J(V,w). Then a subspace A C V is Lagrangian if and only
if JA- = A with respect to g;.

Proof. For v € A,w € V, the assertion that
g7 (Jv,w) = w(Jv, Jw) = w(v,w) =0

implies that A is Lagrangian if and only if JAL = A. (]

Theorem 48 (Lagrangian neighborhood theorem). Let (M,w) be a symplectic
manifold and let L C M be a compact Lagrangian submanifold. Then there exists
a neighborhood N(Tg) C T*L of the zero section Ty, a neighborhood U C M of L,
and a diffeomorphism ¢ : N(Tg) — U such that ¢*w = —df and ¢|;, = id, where 0
is the canonical one-form on T* L.

Proof. By Theorem 46, we can fix an arbitrary complex structure J on the tangent
bundle TM and denote the associated metric by g;. Note that the metric yields a
diffeomorphism of bundles ® : T*L — T'L given by

95 (Pq(v"),v) = v (v)
for v € TyL,v* € Ty L. Now the map ¢ : T*L — M defined by
(b(q’ ”U*) = equ(JqCqu*)

is a diffeomorphism from some neighborhood N (T'y) of T'y onto its image U, where
exp is the exponential map on M corresponding to g;.
Now if v = (vo,v7) € Tq,0)T*L = T,L © T, L, we claim that

d¢(q70)(v) = vg + J4Pq07.
By linearity, it suffices to compute d¢, o) on TyL and Ty L separately. In partic-

ular, let ¢ : [0,1] = T'M be a curve given by ¢(t) = (a(¢),0), with ¢/(0) = (v, 0).
Then

exPa(t) (Ja(t)Pa(r)0)

t=0

a(t)

t=0

_d
ot
_d
T dt
= 9.

d(q,0)(v0,0)

Next take ¢(t) = (g, tv]). Clearly ¢/(0) = (0,v7). Then

o d .
d(q,0)(0,v7) = It exp,, (Jp®ptv7)
t=0

_ *
= Jp®puy,

as desired.
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We can now compute, for v = (vo, v}), w = (wo,wy) € T(q,0)T*L,
P w(q,0) (v, W) = Wy (Vo + JgPguT, wo + JPqwy)
= wq(vo, Jg@qwi) — wq(wo, JgPqv1)
= gu(vo, ®qwi) — g (wo, Pqv7)
= wi(vo) — vy (wo)
= —df4,0)(v,w).

This shows that ¢*w = —df on the zero section. Now the result follows from
Moser’s trick, Theorem 2.1. [l
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5. WEEK 5
5.1. Almost complex manifolds.

Definition 49. Let M be a 2n-dimensional real manifold. An almost complex
structure on M is a complex structure J on the tangent bundle T'M. In this
situation we say that (M, J) is an almost complex manifold. The almost complex
structure is compatible with a nondegenerate two-form w on M if J is compatible
with w.

Theorem 50. For each nondegenerate two-form w on M the space of almost com-
plex structures compatible with w is nonempty and contractible. Conversely, for
every almost complex structure on M the space of compatible nondegenerate two-
forms is nonempty and contractible.

Proof. See Theorem 46. O

Example 51. Let X C R? be an oriented hypersurface. Let v : X — S? be the
Gauss map, which assigns to each point z € X the outward-pointing normal vector
v(z) L T, X. Define, for u € T, X,

Jou =v(x) X u,

where the product is the vector (cross) product on R3. It follows from the vector
triple product identity a x (b x ¢) = b(g(a, c)) — ¢(g(a, b)), where g is the standard
metric on R3, that J2 = —idr, x. Define a two-form w on X by
w(v,w) = (v(z))Q
=g(v(z),v x w),
where Q(u,v,w) is the determinant of the matrix whose columns are u,v,w. It is
straightforward to check that J is compatible with w: for v,w € T, X,

w(Jvaxw):g( (z), (v(z) x v) X (v(z) X w))
v(x),v(z)g(v(z) X v, w))

=g wyl/( ) X v)
= g(v(x),v x w)
= w(v, w)

(v, Jov) = g(v(x),v x (v(z) X v))
= g(v(x), g(v,v)v(z))
=g(v,v)
>0

where we have used the vector triple product identity as well as the cyclic property
of the scalar triple product.

Example 52. Consider S? C R? with the almost complex structure J from the
previous example. We compute the expression of J in stereographic coordinates.
Recall we have ¢ : S% — (0,0,1) — R? given by

o) = (1512 )
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and inverse

2X 2Y X2+y?2-1
w(X7 Y) = 2 27 2 27 2 2 N
1+X24+Y2' 14+ X24+Y2"'X24Y241
For a point p = (z,y,z) € S? and a vector u = (v,w) € T,52, some computation
reveals that
Jp(’U, ’UJ) = d¢ ((I, Y, Z) X dw(vv ’UJ))
= (w, —v).
Definition 53. Let (X, J) be an almost complex manifold. We define the Nijen-
huis tensor N; by
Ny(v,w) = [v,w] + J[Jv,w] + J[v, Jw] — [Jv, Jw)]
for v, w vector fields on X.
Lemma 54. The Nijenhuis tensor is a skew-symmetric covariant (2,0)-tensor on
X satisfying
(a) Nj(v,Jv) =0 for all vector fields v;
(b) Nj, =0;
(c) If ¢ € Diff (M) and v,w are vector fields then
Ny g (¢™v, " w) = ¢* Ny (v, w).

Proof. Writing v = v'0/0z%,w = w'd/dz" in local coordinates, the Lie bracket
[v, w] becomes'®

[v,w] = (w’ v’ ) ouw' 9
T Oz oxd ) Ozt
Finish this. O

Suppose now that (X,J) is an almost complex manifold. Denote by TrX
the complexification of the real vector bundle TX, ie. TcX = TX @ C. We
note that the complexified tangent bundle splits into +i¢ J-eigenbundles Tc X =
TYOX @ T X, respectively.!” These are often referred to as the holomorphic and
antiholomorphic tangent bundles of X.

Definition 55. Let X be an almost complex manifold. We define the vector

bundles
/\::X = /\k(TCX)*

N7 x = N 0x) @ \' (@ x)".
and write .A’;(’C and AR for their sheaves of sections, respectively. We denote the
projections A®* — AF and A®* — AP9 by II¥ and IIP*9 respectively. It is not hard

to show that
AexX= @ N"x

p+q=k
Aé _ @ AP
p+q=k
16We follow McDuff/Salamon in the convention that [v, w] = —L,w.

17Here, J is really J ® C.
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and additionally, that AP7 X = A"? X and AP¢ = A9P. Now if d : AL — AET is
the exterior derivative'®, we write

o=T1Pt1a04
o =TIt o d,
and 0, 0 satisfy the appropriate graded Leibniz rule.
With this notation now set, we come to the key definition.

Proposition 56. Let (X,J) be an almost complex manifold. Then the following
conditions are equivalent:

(a) d=0+ 0 on A%;

(b) TI°20d =0 on A“Y;

(c) [TO1X, T X] c TO1X;

(d) Ny =0.

If X satisfies one of these equivalent conditions then J is said to be an integrable
almost complex structure.

Proof. We show that (a) is equivalent to (b), (b) is equivalent to (c¢), and that (c)
is equivalent to (d). B
For (a)<+(b), suppose first that d = 9 + 9 and o € AY°. Then
1%2da = T1°%(9 + 0)a
— H0’2(H270 + HLl)dOé
=0.
Conversely, suppose I1%2d = 0 on A0, Clearly d = 9 + 0 if and only if da €

APtLa @ APa+L for all a € AP, Now any a € APY can locally be written as

a linear combination of terms of the form fryw; A -+ A w;, A wg-l Ao A wéq,

with the w € AY? and w’ € A%!'. Then do is expressed as a linear combination
of terms involving df;;, dw;, and dw;-. We have that df € A2 = A0 @ A%,
which takes care of the terms containing df;;. Similarly, since I1%2d = 0 on A
by assumption, dw; € A>% @ AM', which takes care of the terms containing the
dw;. Finally, we have that dw} € A" ® A%? since I1*°d = 0 on A%" (seen by
conjugating (b)), which takes care of the terms containing the dwj. We conclude
that da € APT14 @ APIFL ] as desired.

We now prove (b)«+(c). Fix any a € AMY and v, w sections of T%!. Then, by
definition of da, and since « vanishes on T%!, we find that

(da)(v,w) = va(w) — wa(v) — afv, w]
= —alv, w].

We conclude that 11%2d = 0 if and only if [v,w] € T

We now prove (c) <+ (d). Suppose for now that any section of 70! can be written
as v + iJv for v a section of TX ® C. Then

[v+ iJv,w+ iJw] = [v,w] — [Jv, Jw] — i ([Jv,w] + [v, Jw]) .
This is of the form u + ¢Ju if and only if
J ([Ua w] - [J'U, Jw]) - [Jv,w] + [’U, Jw]a

18Here, d is really d ® C.
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which is equivalent to Nj(v,w) = 0. It remains to show that any section of 70!
can be written as v + ¢Jv. Finish this. ([

Example 57. Let X be a complex manifold. Then we have local coordinates z;, z;
for i =1,...,n and the standard almost complex structure Jy acting as i on 9/9z;
and —i on 0/0%;. Now we note that for o € AP written o = ayydz! A dz7, we
have

6a1J k 8@[] _k I _J
da = ( B dz" + BEC dz® | Ndz' ANdZ7.
Clearly then d = 0 + 0, as @ = IIPT14d and 0 = II”9*!. Hence, by Proposition
56(a), Jo is integrable.

The above example shows that complex manifolds induce integrable almost com-
plex structures on their underyling real manifolds in a natural way. It is a highly
nontrivial fact that the converse is also true.

Theorem 58 (Newlander-Nirenberg, 1957). Let (X, J) be an almost complex man-
ifold. Then J is integrable if and only if X has a holomorphic atlas (making it a
complex manifold) such that the induced almost complex structure is J.

Example 59. Let (X, J) be a two-dimensional almost complex manifold. In this
case A%Z = AY! and hence by Proposition 56(b), we find that J is integrable.
We conclude using the Newlander-Nirenberg theorem that every two-dimensional
almost complex manifold is in fact a complex manifold.

Example 60. It turns out that there exists a vector product on R7 that is bilinear
and skew-symmetric, and hence it follows along the lines of Example 51 that every
oriented hypersurface X C R7 carries an almost complex structure. This argument
shows, in particular, that S% is an almost complex manifold. It was shown by
Calabi, however, that this almost complex structure is not integrable. Indeed, the
existence of an integrable almost complex structure on S is still an open problem.

5.2. Kahler manifolds.

Definition 61. A Kéahler manifold is a symplectic manifold (M, w) equipped with
an integrable almost complex structure J € J(M,w).

Example 62. The most basic example of a Kéhler manifold is (R?",wq, Joy). In-
deed, viewing R?" as C" we can introduce coordinates z* = z* + iy, ¢ = z* — iy
with respect to which THC™ and T%!C™ are trivialized by the frames 9/92° and
0/0%", respectively. Then it is straightforward to check that d = 9 + 8 on A%. In
these coordinates,

dz' = da’ + idy’
dz' = dz' — idy’.

and a easy computation reveals that the symplectic form wqy can be written
. n
_ ! i A 75t
wy = 3 Zl dz"' NdZ'.
i—

In fact, if we let f = "7 z'2%, we can write wy = i00f /2.

Example 63. Every two-dimensional symplectic manifold is Kéhler with respect
to any compatible almost complex structure.
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Example 64 (Complex projective space). Let P™ denote the complex projective
space, which is a complex manifold of dimension n. Let J be the induced integrable
almost complex structure.
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6. WEEK 6
6.1. Poisson brackets.

Definition 65. Let (M,w) be a symplectic manifold. We say that a vector field
X € X(M) is symplectic if

or equivalently,
Exw =0.
We denote the Lie algebra of symplectic vector fields by X (M, w).
Proposition 66. Let M be closed and let X € X (M) be a smooth vector field with

flow F: I x M — M. Then F; is a symplectomorphism for all t if and only if X
is symplectic.

Proof. Note that Fyw : I — T'(M, \> T*M) gives us a smooth curve in the vector
space D'(M, \> T*M). Then

d d
el F* - = F*
dt ( t W) dS o ( Sthw)
= Ft*/.ZXw
— Frd(ixw)
and we see that the curve is constant at w if and only if X € X (M,w)."? O

For the most part, we will focus on a subset of symplectic vector fields known as
Hamiltonian vector fields (also introduced in section 1).

Definition 67. Let H : M — R be a smooth function and let Xz be the vector
field determined uniquely by

txgw =dH.
We say that Xy is a Hamiltonian vector field for the Hamiltonian H. If M
is closed, Xy generates a smooth one-parameter group of symplectomorphisms F};
as its flow. We call this the Hamiltonian flow associated to H. Computing as in
the proof of the proposition above, we find that

L (Pl H) = XuH = dH(Xy)
= (txw)(XH)
= UJ(XH,XH)
=0.

We conclude that H is constant along the Hamiltonian flow.
Example 68. Sphere with cylindrical polar coordinates and H the height function.

Definition 69. Let k be a field. A Poisson algebra A over k is an k-vector space
equipped with bilinear products - and {-,-} such that

(a) the product - gives A the structure of an associative k-algebra,;
(b) the bracket {-,-} gives A the structure of a Lie algebra;
(c) the bracket {-,-} is a k-derivation over the product -.

19Understand this computation better.
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Proposition 70. Let (M, w) be a symplectic manifold. Define a product on C*°(M)
as

{f.9} = w(Xy, Xy).
Then C*°(M) forms a real Poisson algebra.
Proof. That C*°(M) is an associative R-algebra under multiplication is clear (in
fact, it is even commutative). Now, since
LXf +Xp,W = LX, W+ Lx,,w =dft +dfs = d(fi1 + f2) = LXf, 4 gy -
uniqueness forces Xy, + Xy, = Xy, 4p,. It follows immediately that the Poisson
bracket is bilinear. That the bracket is alternating follows from the fact that w is.
Similarly, since
LgXn+hX,wW = gLx,w + hix,w = gdh + hdg = d(gh) = tx,,w,
we conclude that Xz, = g X5, + hXy, and hence

{f7 gh} = w(Xf7 Xgh) = gw(va Xh) =+ hW(Xf, Xg) = g{fa h} + h{fa 9}7
which proves the derivation property (that the bracket is zero on a constant in R
is easy to check).

It remains to check the Jacobi identity

{f{g,n}} +{g.{h, f}} +{h,{f. g}} = 0.
Using anticommutativity and the fact that
{fv g} = (LXfW)(Xg) = df(Xg) = ng»
we can rewrite the left-hand side as
Xy Xgh — XgXph+ Xy gph = =[X5, Xglh + X (5 610
Hence it suffices to show that Xy = [Xy, X,]*" To see this, note that
Ly tx,w=dix,tx,w=d{g,f} = LX (g 1y W
and, using Cartan’s (second magic) formula,*!
EXfLng = oy, X,W + Lxgﬁxfw = UX, X W
(since Lx,w = 0), so
EX (g, W = UXy X)W
Now uniqueness implies that X ;v = [Xy, X, as desired. O
A manifold equipped with a Poisson algebra structure on its smooth functions
is called a Poisson manifold. The previous proposition shows that every symplectic

manifold is a Poisson manifold. The following example shows that the converse is
not true, as a Poisson manifold can have arbitrary dimension.

Example 71 (Lie-Poisson structure). Let g be a real Lie algebra. Denote by g* the
dual vector space. Treating g* as a manifold, we note that the de Rham differential
of f e C®(g*) is dfy : Tog® = g* — R for a € g*. Since g** is naturally identified
with g, it is easy to check that

{fa g}(a) = Oé[dga, dfa}'

provides a Poisson structure on g*.

20We follow Mcduff/Salamon in the convention that [X,Y] = —LxY.
215ee Morita’s Geometry of Differential Forms, Theorem 2.11(1).
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Note that the Poisson algebras in the two examples above are commutative in
the product -, but these need not be the case in general.

Morphisms in the category of Poisson manifolds? (see Wikipedia)

What happens if H : M — R is Morse? This implies that dH : M — T*M
intersects the zero section of T* M transversely. What does this give us?

Can we extend the Poisson structure to the exterior algebra of forms?

6.2. Group actions. Before discussing group actions on symplectic manifolds, we
review some basic notions from Lie theory. Let G be a Lie group and g = T.G be
its Lie algebra, and denote left (right) multiplication by g as L, (Ry).

Lemma 72. There is a Lie algebra isomorphism between the Lie algebra g of G
and the space of left-invariant vector fields on G. In particular X € g is sent to the
vector field X satisfying (L; X)n = Xgn for all g € G such that X, = X.

Lemma 73. The left-invariant vector fields on G are complete, i.e. their flows
define diffeomorphisms of G.

Proof. By the uniqueness of integral curves, it suffices to show that if v: I — G is
an integral curve then Ly oy is as well. This is a straightforward computation:

d d
a (Lgo7y) = (dLg o dy) (dt)
=dLg(Xy1))
= XLyo'y(t)a
as desired. O

Definition 74. The exponential map is the smooth map exp : g — G given by
exp(€) = ¢¢(e),

where gzﬁé : G — @G is the time 1 flow associated to the left-invariant vector field 5 .
It is easy to see that exp(t§) = q’)g(e). Moreover, if [¢,n7] = 0 then exp(§ +n) =
exp(§) exp(n). Finally, for a morphism f : G — H of Lie groups, we obtain a
commutative diagram

_f

G H
exp] TCXP
dfe
g——b

which we will refer to as the naturality of exp. Note that the differential at e of a
Lie group homomorphism is a Lie algebra homomorphism, as is df. here.

We now consider the symplectic case.

Proposition 75. The Lie algebra of the Lie group of symplectomorphisms Symp (M, w)
is the space of symplectic vector fields X (M,w).

Proof. This involves dealing with time-dependent vector fields, so I'll work through
it later.? d

22PRinish
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Now suppose G acts on (M,w) symplectomorphically, i.e. there is a group ho-
momorphism ¢ : G — Symp(M,w) taking g — 4. Differentiating this map at the
identity yields a Lie algebra homomorphism di. : g — X(M,w). We denote the
image of £ € g under dip. by &y. Now let ¢ : G — Aut(G) be the conjugation
homomorphism cyh = ghg™' and denote by Ad : G — Aut(g) the homomorphism
taking g to (dcg)e.

Lemma 76. In the notation above, we have an equality of vector fields

(Adg &) m = Py-1&u,

for€eg.
Proof. For p € M we can write, using the naturality of exp and the chain rule,??
d
(Adg &) m(p) = T Yexp(t Ad, €) (P)
t=0
d
= @ . 1pgexp(tﬁ)gfl(p)
d
= % ¢g¢exp(t§) (%—1 (p))
t=0

= Ayl y6at (01 ()

= (Vg-1d¢£)(p)-
0

Definition 77. An action ¢ of G on (M,w) is weakly Hamiltonian if the vector
field &ps is Hamiltonian for each £ € g, i.e.
Leyw = dHe

for some He € C°°(M). For a weakly Hamiltonian action, then, we obtain a map
g — C°(M) taking { — H. This map is a priori not even linear. However,
since each H¢ is defined only up to a constant, we can choose the H; to make
g — C*°(M) linear.

We say the action ¢ of G on (M, w) is Hamiltonian if the map g — C*°(M) can

be chosen to be a Lie algebra homomorphism (with respect to the Poisson structure
on C*°(M)).

Definition 78. Suppose v is a Hamiltonian action of G on (M,w). We say that a
map u: M — g* is a moment map for the action if

He(p) = (u(p), )
where (-, -) is the pairing between g* and g.
Example 79. Consider the action of S on the sphere (with its usual symplectic
structure) that rotates the sphere about its vertical axis. More precisely, using
cylindrical coordinates 6,z away from the poles, the action is given by v : St x

S? — 5% as (p,(0,2)) — (0 + p,z). The associated Lie algebra action is then
dipe s u(1) 2R — X(S?%,w) given by £ — £0/06. In the notation above,

0
T

23Review this.
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Now, since w = dfl A dz away from the poles, we find that i¢,,w = {dz. Hence the
action is Hamiltonian (the Poisson condition is trivial as u(1) is one-dimensional)
since

HE = EZ
We obtain a moment map u : S? — u(1)* = R given simply by

w(f, z) = z.
This is simply the height function on the sphere, whose fibers are precisely the
orbits of the S! action.

Definition 80. Suppose (M,w = —d)\) be an exact symplectic manifold. We say
that the action ¢ of G'on M is exact if ;A = A for each g € G.

Remark 81. Recall that a closed symplectic 2n-manifold (M,w) cannot be exact.
Indeed, if it were, the volume form w™ would be exact and Stokes’ theorem would
imply that | y w" =0, which is not possible. Hence for M closed, w must represent
a nontrivial class in H?(M;R).

Proposition 82. Let (M,w = —d\) be an exact symplectic manifold. Then every
exact action of G on M is Hamiltonian with

Hg = Lxg)\
for€eg.
6.3. Cohomological obstructions. In general, weakly Hamiltonian actions need
not be Hamiltonian. In this section, we digress briefly to derive sufficient conditions
for an action to be weakly Hamiltonian, and a necessary condition for a weakly
Hamiltonian action to be Hamiltonian. For this, we quickly present Lie algebra
cohomology, following Ortega/Ratiu.”

Let G be a real Lie group of dimension n. Similarly to the case of vector fields,
we say that a differential k-form w € QF(G) is left invariant if Liw = w for each
g € G. Note that left invariant k-forms can be identified with the k-forms A*g*,
since they are determined by their action at the identity. We now obtain a chain
complex of left-invariant forms

0—— Ag"2R—— Algxg-—— - — 5 A"g*2XR—— 0,

where the differentials are given by the expected formula: for w € A*g*,
dw(&)a"wgk) = Z (_1)i+jw([£i7€j]7£07"'7573’"'7éj7"'a§k¢)~
0<i<j<k
We note the following low-dimensional cases, which will be the ones of interest to
us. For w € AYg*, clearly dw = 0. For w € Alg* = g*,

dw(1,8&2) = w1, &o
and for w € A%g*,

dw(&1,62,8&3) = —w([&1, &), €3) + w([€s, &), &2) + w([€2, €3], &)

We now define the Lie algebra cohomology H®(g,R) to be the cohomology of
the above complex.

242dd citation!
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Remark 83. More generally, let g be a Lie algebra over k£ and let M be a g-
module. Denote by —9% : g-MoD — g-MoOD the invariants functor. Then one
defines H*(g, M), the cohomology groups of g with coefficients in M, as the right
derived functors R*(—9)(M). Of course, this is much more generality than we
will need; the formulation above is computing the cohomology of the Chevalley-
Eilenberg resolution of R.%°

The first cohomology group is quite easily computed. Indeed,

H'(g,R) = {w € g" | w1, &) = 0}
Noting that w € g* is a map w : g — R annihilating precisely [g, g], and that such
maps are in correspondence with maps g/[g, g — R, we conclude that

H'(g,R) = (¢/[g,9])".

In particular, we note that if g is semisimple, H*(g,R) = 0. We now relate these
cohomology groups back to Hamiltonian actions.

Proposition 84. The commutator of two symplectic vector fields on (M,w) is
Hamiltonian.

Proof. Let X,Y € X(M,w), i.e. dixw =diyw =0 or equivalently Lxw = Lyw =
0. Now, using both of Cartan’s magic formulas, we find that

Ux,yw = [Lx,ty]w
= ﬁxbyw
=dixtilyw.

We conclude that [X, Y] is Hamiltonian with Hix y) = w(X,Y). O

Corollary 85. Suppose G acts on (M,w) through symplectomorphisms and that
H'(g,R) = 0 or Hig(M,R) = 0. Then the action is weakly Hamiltonian.

Proof. If the first Lie algebra cohomology vanishes, we must have that g = [g, g].
In particular, the induced symplectic vector fields on M must be Hamiltonian by
the previous proposition. If the first de Rham cohomology vanishes, every closed
one-form on M is exact and thus, by definition, every symplectic vector field is
Hamiltonian. (]

Less trivial are the obstructions for a weakly Hamiltonian action to be Hamil-
tonian.

Proposition 86. Suppose the action of G on (M, w) is weakly Hamiltonian, where
M is connected. Then the action determines a cocycle [7] € H?(g,R) which vanishes
if and only if the action is Hamiltonian.

Proof. Since the action is weakly Hamiltonian we may choose a linear map g —
C*>(M) sending & — He such that ¢, w = dH. For each pair {,n € g, define a
function on M

7(§m) = {He, Hy} — Hie ).
Since
Xuy = &nv = S, nu] = [Xue, X, | = Xqu, 1,y

25Cite Weibel
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we find that
d (Hyg.y — {He, Hy}) =0
so 7 is locally constant, hence constant. Clearly then 7 € A2g*.
We now claim that dr = 0, i.e.

7([&n), Q) +7(In,¢], &) + 7([¢, €], m) = 0.
Reasoning as in the previous paragraph, we find that
{Hey, Hey = {{He, Hy}, Hl,
so by the Jacobi identity for the Poisson bracket,

dr(&n,¢) = — (Hie.n.q + Himae) + Hyie.e.m) = 0,

by linearity of the map § — H¢ and the Jacobi identity for g.

Hence 7 represents a cocycle [r] € H?(g, R). If the action is Hamiltonian to begin
with, obviously 7 = 0, since { — H¢ is a Lie algebra homomorphism. Conversely,
suppose [7] = 0. This is equivalent to asking that 7 be a coboundary

7(&,m) = o€, 7]
for some ¢ € g*. Modifying the given map & — H¢ to §{ = He + o(§), we find that

[5377] = H[&,'r]] + 0[5777] = {HfaHﬂ}a
and we conclude that the action is Hamiltonian. O

Example 87. The second Whitehead lemma states that for g semisimple, Hz(g, R) =
0.%5 Thus, if the Lie algebra of G is semisimple, every weakly Hamiltonian G-action
on (M, w) is Hamiltonian.

26Reference Weibel
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7. WEEK 7 AND WINTER BREAK

The following section is essentially a rewrite of the previous section in order to
clear things up in my head.?”

7.1. Group actions on symplectic manifolds.

Definition 88. Suppose G acts on (M,w) through symplectomorphisms. The G-
action induces a g-action on (M,w), i.e. a symplectic vector field £y € T(TM,w)
associated to each ¢ € g. We say that the action is weakly Hamiltonian if there
exists a linear comoment map x : g — C*° (M) such that

bepyW = d’i(é)

for all £ € g. Furthermore, we say that the action is Hamiltonian if s is a Lie
algebra homomorphism with respect to the Poisson structure on M, i.e.

k(&) = {K(&), k(n)}-
Remark 89. Recall that a symplectic vector field £y on (M, w) satisfies
Leyw=dig,w=0.
Note that since every closed form is locally exact, every G-action through symplec-
tomorphisms is locally weakly Hamiltonian.
Example 90. Consider S? with its usual symplectic structure written in cylindrical
coordinates (away from the poles) as
w=dioNdz.
Let S' act on the sphere by rotating it about its vertical axis. More precisely, the
action is given by
P8t x 8% — 52
(t,0,2) — (04, 2).

It is easy to see that S! acts through symplectomorphisms. The associated Lie
algebra action is then

dip s u(1) 2R — T(TS? w)
0
§r Eon = £
We find that
te,w = &dz.

Since u(1) is an abelian Lie algebra and {z, 2z} = 0, we conclude that the action is
Hamiltonian with comoment map x : R — C°°(S5?) given

K(§) = &z

Example 91. Consider T*S"' with its usual symplectic structure written in local
cylindrical coordinates as

w=d0 Adz.

27TAdd pictures.
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Consider the action of R on T*S' = S' x R that translates the fiber direction:
v :RxS'xR— S xR
(t,0,z) = (0,z + t).

It is easy to see that R acts through symplectomorphisms. The associated Lie
algebra action is

dipe : LieR =2 R — T(TT*S*, w)
0
5 — gT*Sl — @
We find that
w = —&db.

berw g1
Now, since the one-form df is not exact on T*S", we conclude that the action is

not even weakly Hamiltonian. Of course, if U C S is any proper open subset, then
df is indeed exact on T*U, as alluded to in Remark 89.

Proposition 92. Consider an exact symplectic manifold (M,w = —d\) and let G
act on M through symplectomorphisms. Suppose Yy = X for every g € G, i.e. the
G-action is exact. Then the G-action is Hamiltonian with a comoment map

ﬁ(f) = ley A

Proof. We first verify that the action is weakly Hamiltonian, i.e. t¢,,w = dr(§):

d(LgmA) = ,CgM)\ — L5Md>\
_4d

S dt

d

=—| A

dt|,_ e

= Lng.

’(/}:xp(tg))‘ +lep W

t=0

To see that it is in fact Hamiltonian, we check that  is a Lie algebra homomorphism:
{r(€), k(m)} = {rea As A}
= dA(r,Em)
= AEnr) — EpA(ar) — Alnar, S
= Uenr ] A = E([€ar; naa])-
|

Lemma 93. Let G act through diffeomorphisms ¥4 on a manifold X. Then the
action lifts to symplectomorphisms g : T* X — T*X by
&g(aw)(v) = ag (dgv)

forveT glmX. In particular, the lifted action is exact with respect to the canonical
one-form on T*X .
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Proof. More generally, we show that any diffeomorphism f : X — X lifts to a
diffeomorphism f : 7% X — T* X preserving the canonical one-form on 7% X. Define

f(ao:)v = a,(dfv)

for v € Ty-1,. Fix a vector w € T,,,T*X. Then, invoking the definitions of § and
f respectively,

(F*0)a.w = 07, (dfw)
= f(az)(d(r o fw)
= ag(d(fomo fw)
= a,(drw)
=04, W,
as desired. We have used that foro f=m:T*X — X. O

The cotangent bundle of a manifold is the prototypical exact symplectic manifold,
and hence every exact action on a cotangent bundle yields a Hamiltonian action.
Thus the previous two results generate a large class of Hamiltonian actions on the
cotangent bundle. We will see some examples shortly.

Note that Example 91 — though an action on the cotangent bundle — is not an
example of an exact action, as A = zd# is not preserved under z — z + .

7.2. Cohomological obstructions. In the sequel we will concern ourselves pri-
marily with Hamiltonian actions. It is then natural to ask what the obstructions
are to a G-action by symplectomorphisms being Hamiltonian. In this section we
digress briefly to show that such obstructions are cohomological in nature. For this
we quickly introduce the machinery of Lie algebra cohomology.

Definition 94. Let V be a left g-module, i.e. a real vector space V equipped with
a Lie algebra homomorphism g — EndV. A map of g-modules is a linear map
commuting with the g-action. There is a functor —¢ : MoD(g) — MoD(R) taking
VioVI={veV ]| =0,£§ € g}, the invariant submodule. This functor is only
left-exact in general, so if V' is a g-module, we define the Lie algebra cohomology
of g with coefficients in V to be

H*(g, V) = R*(—-)*(V)
the associated right derived functors.
In practice, we use the following standard resolution.

Definition 95. The Chevalley-Eilenberg resolution of g with coefficients in a
g-module V' is the cochain complex of linear maps (Hom(A®g, V'), dcg), where the
differential is given by

deégo (&, ént1) = Z(_ Y HE o(Ery & En)
+Z Z+J glv&jhflw")éiv"'7gj7"'7£n)7

1<J
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for o € Hom(A"g,V).?® Note that, by convention, we take A°g to be the trivial
g-module R and dy = 0.

We will use the following result in the sequel without further mention.

Theorem 96. The Chevalley-FEilenberg resolution of g with coefficients in a g-
module V' computes the Lie algebra cohomology H*(g,V) of g.

Proof. See, for instance, Weibel’s book. O

Remark 97. The Chevalley-Eilenberg resolution of g is closely tied to the de Rham
cohomology of any compact connected Lie group G with the given Lie algebra, as we
now sketch in some detail. For simplicity, we fix our coefficients to be the the trivial
g-module R. Recall that the de Rham complex on G is (2°(G), dgr), the cochain
complex of differential forms on G together with the usual exterior derivative. On
the other hand, one can consider the subcomplex of left-invariant differential forms
(Q%(G),dar). Identifying the space of left-invariant vector fields on G with the
Lie algebra g as usual, we find by dualizing that Q% = Hom(A®g,R). Under this
identification, the exterior derivative becomes dcg by virtue of our definition above,
so we conclude that the Chevalley-Eilenberg complex of g is naturally identified with
the subcomplex of left-invariant differential forms on G.
Now we claim that the inclusion ¢

00— Q8(G) —— Q*(G)

is a quasi-isomorphism, i.e. Q%(G) computes the de Rham cohomology of G. We
construct the quasi-inverse explicitly using the existence of the left-invariant Haar
measure on G: if a € QF(G), the average

al :/ Lia dg
G

is now left-invariant. Since d commutes with pullbacks and the integral over g € G,
we find that -1 : Q*(G) — Q&(G) is a map of cochain complexes. Clearly the
composition — o ¢ yields the identity on Qg&(G). It remains to show that ¢ o —C
is cochain-homotopic to the identity on Q°(G), i.e. there exists a linear map h :
QF(G) — QF1(Q) such that

a— L(OLL) = dgrh + hdar

for o € QF(G).

The construction of h is somewhat involved.?’

This argument can be generalized by replacing R with an arbitrary g-module
and G by any G-homogeneous space.

The first result characterizes when an action is weakly Hamiltonian.

Proposition 98. Let G act on (M, w) through symplectomorphisms. Then we have
a linear map H'(g,R)* = g/[g, 9] — Hyp(M,R) taking [€] = [te,,w]. The action of
G is weakly Hamiltonian if and only if this map is identically zero.

28That this is a complex relies nontrivially on the Jacobi identity and the fact that V is a
g-module.
29Work through the argument via integration over fibers of G x G — G.
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By the remark above, Hig (M, R) = H'(g;R) if G is compact and connected. In
general, the left hand side is the Lie algebra homology of g, because Hl(g,R) =
(g/lg,9])*, as is checked by an explicit computation.

Proof. To show that the map is well-defined, it suffices to show that the commu-
tator of two symplectic vector fields is Hamiltonian (as elements of [g, g] are linear
combinations of commutators):

Len W = (‘CEM - L7’IM£§1\4)W = ﬁEM pyW = dLEM Inp W-

Here we have used both of Cartan’s magic formulae. Now, by definition, the action
is weakly Hamiltonian if and only if ¢¢,,w is exact for all &. O

In what follows, we will focus on Hamiltonian actions over those that are only
weakly Hamiltonian. The next two propositions, together with Whitehead’s lemmas
stated below show that in many cases of practical interest, where g is semisimple,
actions through symplectomorphisms are automatically Hamiltonian, with unique
comoment map.

Proposition 99. Let (M,w) be connected and equipped with a weakly Hamiltonian
G-action. Then the action determines a cocycle [7] € H?(g,R) which vanishes if
and only if the G-action is Hamiltonian.

Proof. Let k : g = C*°(M) be the comoment map for the action such that ¢¢,, =
dk(&) for all £ € g. For each pair &, € g the function ¢ ,, € C*°(M) given by

Ten(p) = {K(£), k() }(p) — (€, 1)) (P)

measures the failure of the comoment map to be a Lie algebra homomorphism.
This function is locally constant and hence constant, since

ATen = X ey i@ — Uemln®

= [ N(i)*XN(n)]w L[§M,77M]w
:O’

where Xy represents the Hamiltonian vector field of f, i.e. the uniquely deter-
mined vector field satisfying ¢x,w = df. As such, we may view 7 as an element of
Hom(A%g, R).

We now claim that dcgT = 0, or:

7([&,m], Q) + 7([n, <], €) + 7([¢, €], m) =

for £,m,C € g. This is immediate in view of

LR KDL RO = 1) o = o )
= e mmlbCuW = {H([f, 77])) H(C)}

because

7([& ), Q) +7([n, ¢], &) + 7([6, €] m) = {{r(€), w()}, ()} = w([[€:m], C])
+ {r), (O}, w(€)} = ([, ], €])
+ {r(0), w(&)}, w(m)} — w([¢, €], 1)),

[= =1 (

which is zero by the Jacobi identity for {—, —} and

x

=

—] (and linearity of k).
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Hence 7 represents a cocycle [r] € H*(g,R). If the action is Hamiltonian to begin
with, obviously 7 = 0, since k is a Lie algebra homomorphism by construction.
Conversely, suppose [r] = 0. This is equivalent to asking that 7 be a coboundary

(&) = ol&,n]
for some o € Hom(g,R) = g*. Now define s : g — C*°(M) as
E=K+o0o
and note that
BlEm) = wl€,n] + ol& n] = kl& 0] + {x(&), k(n)} — K[E 7]
{k(&), (n)}-

We conclude that the action is Hamiltonian with comoment map k. O

In the Hamiltonian case, moroever, comoment maps are unique up to first coho-
mology.

Proposition 100. Let (M,w) be connected and equipped with a weakly Hamil-
tonian G-action. Comoment maps for the action are unique up to cocycles in
[c] € H'(g,R) = (g/[g, g])*. In particular, if H'(g,R) = 0, there is a unique como-
ment map for a Hamiltonian action of G.

Proof. Let k1,k2 : g = C°(M) be two comoment maps for the action of G. By
definition, dk;(§) = t¢,,w for £ € g, so d(k1(§) — k2(§)) = 0. Therefore ¢(&§) =
k1(§) — ka(§) € C°(M) is constant and we obtain a linear map ¢ : g — R in
g* = Hom(A'g, R). It remains to show that dcgc = 0. For this we use the fact that
k is a Lie algebra homomorphism: for &, 7 € g,

(dcee)(&n) = cl€ ] = ril€,m] — K2[&n]
= {r1(§), k1 (n)} — {K2(&), r2(n)}
= w(én, ) —w(éar, ) =0,
as desired. O

Theorem 101 (Whitehead’s lemmas). Let g be a semisimple Lie algebra over a
field of characteristic zero. If V is any finite-dimensional g-module then Hl(g7 V)=
H(g, V) =0.

Proof. See, for instance, Weibel’s book. ([l

Corollary 102. Suppose G acts on a connected symplectic manifold (M, w) through
symplectomorphisms. If g is semisimple then the action is Hamiltonian with a
unique comoment map.

7.3. Moment maps. The moment map repackages the data of the comoment map
as follows.

Definition 103. Suppose (M,w) has a weakly Hamiltonian G-action with como-
ment map « : g — C®(M). Then we say that a map p: M — g* is a moment
map for the action if for p € M

k(§)(p) = (u(p), &),

where (-,-) is the evaluation pairing between g* and g. If the action is in fact
Hamiltonian, the uniqueness of comoment maps (Proposition 100 above) implies
uniqueness of moment maps.
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Theorem 104 (Noether, Souriau, Smale). Let u: M — g* be a moment map for
a weakly Hamiltonian G-action on (M,w) with comoment map k : g — C*(M).
Then 1 is constant along the flow of the Hamiltonian vector field associated to any
G-invariant function H € C* (M) .30

Thus, from the perspective of physical systems, the moment map carries the data
of the comoment map, but now as a sort of generalized Hamiltonian that respects
the symmetries of the system.

Proof. Since H € C=(M)%, we have

H = Yepuetl
for each ¢ € g. Differentiating this identity at ¢ = 0, we find that
= % _ Ve H
=L, H = dH (&nr)
= w(Xp,&u) = {H,r(§)}
= Xur(§),

and hence the function k() is constant along the Hamiltonian flow of H for all £ € g.
Now since () = (u, &), we find that p must be constant along the Hamiltonian
flow of H. O

0

Example 105 (Linear momentum). Consider the phase space (T*R?,w) of a 1-
particle system in R3. The N-particle case is a straightforward but index-heavy
extension. Translation provides an action of (R?,+) on R3 as ¢ — g+ v for v € R3.
An easy computation reveals that this lifts (in the sense of Lemma 93) to an action
¥ of R® on T*R? as 9, : (¢,p) = (¢ +v,p). This action is exact by Lemma 93
and hence Hamiltonian by Proposition 92. The associated Lie algebra action by
LieR3 = R3 is

£ pups = € o

Then

Uepoga W = (Z dg* A dpk> Erops = Y E'dp’
k i
and we obtain a comoment map & : LieR3 = R? — C>°(T*R?) given by
K(§) = Zfipzu
The moment map pu : T*R3 — (R3)* is therefore given by

Zfipi = (u(q,p). &)

Identifying (R3)* with R? via the standard Euclidean metric, we have that

(g, p) = p,
the linear momentum of the particle.

30Ring references in O-R for N,S,S.
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Example 106 (Angular momentum). Consider again the phase space (T*R3,w)
of a l-particle system in R?. Rotation provides an action of SO(3,R) on R* by
matrix multiplication ¢ — A;;¢° for A € SO(3,R). An easy computation reveals
that this lifts (in the sense of Lemma 93) to an action ¢ of SO(3,R) on T*R?
as ¥a : (¢,p) — (Aij¢?, Aijpj). This action is exact by Lemma 93 and hence
Hamiltonian by Proposition 92. Recall that the Lie algebra so(3,R) is the space of
3 x 3 antisymmetric matrices, with the commutator as the Lie bracket. Computing
the infinitesimal action, we find

d

d ,
7| Yewuo(@:p) = 5 (q+t&q’ + -+ . p+t&pj+--+)
t=0

t=0
.0 0
= ;gijq]afqi + Zz;ﬁijpja*pi

for € € s0(3,R). Therefore the associated Lie algebra action of s0(3,R) by vector
fields is given by

.0 0
§ > Ereral(gp) = Z&'jq] 75+ Zfijpjfi
o dq - Op
Now we find that

(tegups @) (a.p) = <Z dg* A dp’“) Ereps = Y &ii(¢dp’ — pjdg’)
k

g
= Zfz‘j(qjdpi +pidg’) = d Zpifz‘jqj )
i,j ,J

by antisymmetry of &;;. Hence we obtain a comoment map « : s0(3,R) — C>°(T*R3)
for the action given by

K(€)(a,p) = D pilijd’.
2]
The moment map p : T*R? — s0(3,R)* is therefore determined by
> pii;d = (ulg,p), €)-
i

Identifying s0(3,R)* with so(3,R) via the standard Euclidean metric on R which
yields an isomorphism (R?)* =2 R?, we conclude that

0 Q2p1 — @1P2  43P1 — q1P3
(g, p) = | aip2 — @2p1 0 q3p2 — G2P3
q1p3 — q3p1 G203 — G3p2 0

Moreover, using the Lie algebra isomorphism so0(3,R) = (R3, x), we can write
1(a,p) = q X p,
the usual notation for angular momentum.

Example 107 (Lifted actions).

We now turn to the equivariance properties of moment maps. Recall the following
basic definitions from representation theory.
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Definition 108. Let G be a real group and g be its Lie algebra. Conjugation c :
G — Diff(G) given by ¢4 (h) = ghg™! yields a number of interesting representations
of G and g.

Differentiating the conjugation action at the identity, we obtain Ad, = (deg)e :
g — g, which is a Lie algebra endomorphism because ¢, is a Lie group homomor-
phism. We obtain the Adjoint representation (g, Ad) of G where Ad: G — End g
is given by g — Ad,. Dually, there is the Coadjoint representation (g*, Ad") given
by

(Adj 0,8) = (0,Ady-1 §).

Differentiating in turn the Adjoint action at the identity, we obtain the adjoint
representation (g,ad) of g, where ad : g — End g is a Lie algebra homomorphism.
One can check that

ade(n) = [£, 7).
Dually, there is the coadjoint representation (g*,ad*) given by

<ad2 g, 77> = <07 - a’df 77> = <U’ [’r]’ §]>

Definition 109. Suppose (M, w) has a weakly Hamiltonian G-action with moment
map pu: M — g*. We say that p is g-equivariant if

dpp(§ar) = — adg (u(p))-
for all £ € g and p € M. Similarly, we say that u is G-equivariant if

(Ygm)(p) = Adg-r (u(p)).
forge G and p e M.

The following result demonstrates the equivariant nature of moment maps for
Hamiltonian actions.

Proposition 110. Suppose (M,w) has a weakly Hamiltonian G-action with como-
ment map k and moment map . Then the action is Hamiltonian if and only if p
is g-equivariant. Moreover, if G is connected, p is G-equivariant if and only if it is
g-equivariant.

Proof. Recall that the action is Hamiltonian if and only if the comoment map is a
Lie algebra homomorphism, i.e.

{r(&), k(n)} = &[&;m]-
By definition, the right-hand side can be written

s, ml(p) = (u(p), [§,1])
—(ad; (1(p)), €)-
On the other hand, differentiating the definition of the moment map yields

dr(§)pv = (dpipv; €)

for v € T, M, since (—,&) : g* — R is linear and hence its own derivative. Now the
left-hand side of the Hamiltonian condition becomes

{r(&), k() }(p) = dr(&)pnaelp = (dppnnalp: €),

we conclude that the action is Hamiltonian if and only if the moment map is g-
equivariant.
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That G-equivariance implies g-equivariance (regardless of whether G is con-
nected) follows by differentiation. Now suppose G is connected and p is g-equivariant,
i.e. the G-action is Hamiltonian. It suffices to show that the comoment map is G-
equivariant,

R(Ady 1 €) = (E),

because then, by the usual dualization procedure,
((hgr)(p), €) = (gr(8))(p)
= r(Adg-1 §)(p)
= (u(p), Adg-1 §)
= (Adg-1 (u(p)), &),

which establishes G-equivariance of p.*’ (]

Example 111 (Coadjoint orbits). Recall the Poisson structure on g*, show that
coadjoint orbits have symplectic structure, and compute the moment map. Maybe
look at some connections to representation theory?

Let g be a real Lie algebra. The dual g* is naturally a Poisson manifold as we
now describe. For any f € C*(g), the differential df, at o € g* is a linear map
dfy : Tog* = g* — R which can be identified canonically as an element of g. With
this understood, we define the Lie-Poisson bracket on g* to be

{fvg}(a) = _J[dfau dga]'
Note that this bracket reduces to the original Lie bracket on linear functions g —
C>(g").
Furthermore, each coadjoint G-orbit O C g is in fact naturally a symplectic
manifold.

7.4. Symplectic Reduction.

7.5. Applications? Is there anything that Morse theory has to say? We haven’t
made any restrictions on Hamiltonians H. What if H is Morse? See Atiyah-
Guillemin-Sternberg, Duistermaat-Heckmann localization, maybe more.

31Pinish this proof.
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