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These notes were written for a reading course with Professor Eric Zaslow on the
basics of symplectic geometry. They follow Mcduff/Salamon quite closely. These
notes are rather rough, and in several places woefully incomplete: caveat lector.1

1. Week 1

1.1. The cotangent bundle.

Date: Fall 2015.
1add references!
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2 NILAY KUMAR

Definition 1. Let X be a smooth n-manifold and π : M = T ∗X → X be its
cotangent bundle. We define the canonical one-form θ ∈ Ω1(M) as follows. For
any p = (x, ξ) ∈M , set

θp(v) = ξ(dxπ(v)).

The one-form θ is canonical (or tautological) in the sense that its value at a point
is simply given by the covector determined by that point. More precisely, we have
the following characterization.

Proposition 2. The canonical one-form θ is the (unique) one-form such that for
every λ ∈ Ω1(X), λ∗θ = λ.

Proof. We compute, for v ∈ TpX,

(λ∗θ)p(v) = θλ(p)(dpλ(v))

= λp(dp(π ◦ λ)(v))

= λp(v),

where we have used the fact that λ is a section of π, i.e. π ◦ λ = idX . Uniqueness
is easily checked. �

Definition 3. The canonical symplectic form ω ∈ Ω2(M) is now defined to be
the exterior derivative

ω = −dθ,
of the canonical one-form. To be symplectic, ω must be closed and nondegenerate.
That it is closed is obvious.

Proposition 4. The form ω ∈ Ω2(M) is nondegenerate and thus defines a sym-
plectic structure on M = T ∗X.2

Proof. For ω to be non-degenerate, it must be nondegenerate at each point p ∈M .
Given coordinates p = (x, ξ) = (x1, . . . , xn, ξ1, . . . , ξn) in a neighborhood of p, we
can compute

θ(x,ξ)

(
vi

∂

∂xi
+ νi

∂

∂ξi

)
= ξ

(
vi

∂

∂xi

)
= ξiv

i

and hence
θ = ξidx

i.

Taking an exterior derivative, we find that

ω = −dθ
= dxi ∧ dξi.

Fix v ∈ TpM and suppose that ιvωp = 0, i.e. ωp(v, w) = 0 for all w ∈ TpM . In
coordinates, this implies that

ιvj ∂

∂xj
+νj ∂

∂ξj
(dxi ∧ dξi) = vidξi − νidxi

= 0,

and hence that vi = νi = 0, i.e. v = 0. We conclude that ωp is nondegenerate at
each p ∈M . �

2Is there a coordinate invariant proof?
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Remark 5. Note that a 2-form ω on a manifold M is nondegenerate if and only if
ωn is nowhere vanishing. Fix p ∈ M and consider the vector space (TpM,ωp). If
ωp is nondegenerate, we can find a symplectic basis for TpM , and so ωnp evaluated
on (u1, . . . , un, v1, . . . , vn) is nonzero, whence ωnp is not zero on V . On the other
hand, suppose ωp is degenerate, i.e. there is a v 6= 0 such that ωp(v, w) = 0 for
all w ∈ V . Choosing a basis v1, . . . , v2n for V such that v1 = v, we find that
ωp(v1, . . . , v2n) = 0 and hence ωp = 0 on V .

We conclude that every symplectic manifold is orientable.

It is easy to see that ω provides an isomorphism ι : TxX
∼−→ T ∗xX between

tangent and cotangent spaces at each point x ∈ X: since ωx is nondegenerate, the
linear map ι : v 7→ ωx(v,−) is injective and hence bijective. In fact, we can say
more.

Proposition 6. The metric ω induces an isomorphism of vector bundles ι : TX
∼−→

T ∗X = M .

Proof. Recall that an isomorphism in the category of smooth vector bundles is a
smooth bijection3 ι such that the diagram

TX T ∗X

X

ι

π1 π2

commutes and for each x ∈ X, the restriction ιx : TxX → T ∗xX is linear. The
map ι : TX → T ∗X taking (x, v) 7→ (x, ω(v,−)) fits into the diagram above and
is bijective and fiberwise linear. Moreover, ι is a smooth map, as is seen by its
coordinate description computed above. �

Definition 7. A Hamiltonian is a smooth function H : M = T ∗X → R. we
define the Hamiltonian vector field vH associated to H to be the vector field on
M satisfying

ιvHω = dH.

The (local) flow F : (−ε, ε)×M →M determined by vH is called the Hamiltonian
flow.4

Note that an integral curve γvH : (−ε, ε) → M of vH can be thought of as the
trajectory of a physical state in phase space. Indeed, Hamilton’s equations are
given

∂xi

∂t
=
∂H

∂ξi
∂ξi
∂t

= −∂H
∂xi

,

which is precisely the condition that γ′vH (t) = (vH)γ(t). Moreover, H is constant
along the Hamiltonian flow, as

dH(vH) = (ιvHω)(vH) = ω(vH , vH) = 0,

3Existence of a smooth inverse is automatic (reference?).
4Is this a global flow? Does it depend on X?
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i.e. vH is tangent to the level sets of H. In a physical system, where H is the energy
functional on phase space, this phenomenon is the law of conservation of energy.

Proposition 8. The Hamiltonian flow is a symplectomorphism, i.e. F ∗t ω = ω.5

Proof. We use the following trick:∫ t

0

d

dt
F ∗t ω dt = F ∗t ω − ω

since F0 = idM , and hence Ft is a symplectomorphism if and only if the integrand
is zero. But

d

dt
F ∗t ω =

d

ds

∣∣∣∣
s=0

F ∗t+sω = F ∗t
d

ds

∣∣∣∣
s=0

F ∗s ω

= F ∗t LvHω,
and Cartan’s magic formula,

LvHω = dιvHω + ιvHdω,

tells us that LvHω = 0 since ιvHω = dH is closed, as is ω. �

Corollary 9 (Liouville’s Theorem). The volume form ωn on M = T ∗X is preserved
by the Hamiltonian flow.

1.2. Geodesic flow as Hamiltonian flow. We wish to discuss geodesics and ge-
odesic flow. For this, we need the concept of connections and covariant derivatives.6

Definition 10. A connection on a vector bundle E → X is an R-linear map
∇ : Γ(X,E)→ Γ(X,E ⊗ T ∗X) such that the Leibniz rule

∇(fσ) = (∇σ)f + σ ⊗ df,
for all f ∈ C∞(X) and σ ∈ Γ(X,E).

Theorem 11. Given a Riemannian manifold (X, g), there exists a unique connec-
tion on π : TX → X, known as the Levi-Civita connection, satisfying

(i) symmetry:
∇XY −∇YX − [X,Y ] = 0,

for X,Y ∈ Γ(X,TX);
(ii) compatibility with g:

Xg(Y,Z)− g(∇XY,Z)− g(Y,∇XZ) = 0,

for X,Y, Z ∈ Γ(X,TX).

Definition 12. Let v be a vector field on (X, g); we define the covariant deriv-
ative of v along a smooth curve c : I → X to be the vector field

Dv

dt
= ∇dc/dtv,

where ∇ is the Levi-Civita connection. Explicitly, if we write v = vi∂/∂xi and
c(t) = (c1(t), . . . , cn(t)),

Dv

dt
=
∑
i

dvi

dt

∂

∂xi
+
∑
ijk

dci
dt
viΓkij

∂

∂xk
.

5Is there a better proof?
6Reference do Carmo.
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Here Γkij are the Christoffel symbols of ∇, determined by

∇∂/∂xi
∂

∂xj
=
∑
ijk

Γkij
∂

∂xk
.

We say that c is geodesic at some t ∈ I if D/dt(dc/dt) = 0 at t, and that c is
geodesic if it is geodesic at all t ∈ I. In coordinates, the condition for c to be
geodesic is given by a system of second-order differential equations:

d2ci

dt2
+
∑
jk

Γijk
dcj

dt

dck

dt
= 0,

for i = 1, . . . , n.

For the rest of the section, assume (X, g) is Riemannian and we fix the Hamil-
tonian H : M = T ∗X → R as

H(x, ξ) =
1

2

∣∣ξx∣∣2g,
i.e. consisting of only a kinetic term. Here we are implicitly using the nondegeneracy
of g to associate ξx with its corresponding vector (or, equivalently, using g−1).

Proposition 13. The Hamiltonian flow on M = T ∗X is dual to the geodesic flow
on TX. In other words, the integral curves of the Hamiltonian vector field vH
associated to the Hamiltonian above project to geodesics of g on X.7

Proof. It suffices to show, in coordinates, that Hamilton’s equations (i.e. the con-
dition for being on the integral curve) yield the geodesic equations above after the
necessary dualization. Note first that in coordinates the Hamiltonian becomes

H(x, ξ) =
1

2
gijξiξj .

For convenience we will denote the components of an integral curve as xi(t). Hamil-
ton’s equations yield

dxi

dt
=

∂

∂ξi

(
1

2
gjkξjξk

)
=

1

2
gjkδijξk +

1

2
gjkξjδik

= gijξj

dξi
dt

= − ∂

∂xi

(
1

2
gjkξjξk

)
= −1

2

∂gjk

∂xi
ξjξk.

Differentiating the first equation with respect to t and using both of Hamilton’s
equations yields

d2xi

dt2
=
∂gij

∂xk
dxk

dt
ξj + gim

dξm
dt

= gkl
(

∂

∂xk
gij
)
ξlξj −

1

2
gim

(
∂

∂xm
gnr
)
ξnξr.

7Is there a coordinate-free proof? See Paternain’s book.
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Next, differentiating the identity gijgjk = δik, it easy to see that

∂

∂xi
gkl = −glagkb ∂

∂xi
gab.

Using this, contracting indices, and using the first Hamilton’s equation to dualize
ξ’s into dx/dt’s, we find

d2xi

dt2
= −gib

(
∂

∂xk
glb

)
dxk

dt

dxl

dt
+

1

2
gim

(
∂

∂xm
gts

)
dxs

dt

dxt

dt

= −1

2
gib
(

∂

∂xk
glb

)
dxk

dt

dxl

dt
− 1

2
gib
(
∂

∂xl
gkb

)
dxk

dt

dxl

dt

+
1

2
gim

(
∂

∂xm
gts

)
dxs

dt

dxt

dt

= −Γikl
dxk

dt

dxl

dt
,

as desired. �
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2. Week 2

2.1. Darboux’s theorem.

Theorem 14 (Darboux). Let (M,ω) be a symplectic 2n-manifold. Then M is
locally symplectomorphic to (R2n, ωR2n).

We prove Darboux’s theorem using the following stronger statement.

Theorem 15 (Moser’s trick). Let M be a 2n-dimensional manifold and Q ⊂M be
a compact submanifold. Suppose that ω1, ω2 ∈ Ω2(M) are closed 2-forms such that
at each point q of Q the forms ω0 and ω1 are equal and nondegenerate on TqM .
Then there exist neighborhoods N0 and N1 of Q and a diffeomorphism ψ : N0 → N1

such that ψ|Q = idQ and ψ∗ω1 = ω0.

Proof. Consider the family of closed two-forms

ωt = ω0 + t(ω1 − ω0)

on M for t ∈ [0, 1]. Note that ωt|Q = ω0|Q is nondegenerate and hence there
exists an open neighborhood N0 of Q such that ωt|N0

is nondegenerate.8 Suppose,
for now, that there is a one-form σ ∈ Ω1(N0) (possibly shrinking N0), such that
σ|TQM = 0 and dσ = ω1 − ω0 on N0. Then

ωt = ω0 + tdσ

and we obtain by nondegeneracy a smooth vector field Xt on N0 characterized by

ιXtωt = −σ.

The condition σ|TQM = 0 implies, again by nondegeneracy of ωt, that Xt|Q = 0.
Now consider the initial value problem for the flow ψt of Xt,

d

dt
ψt = Xt ◦ ψt
ψ0 = id .

This differential equation can be solved uniquely for t ∈ [0, 1] on some open neigh-
borhood of Q contained in N0, call it again N0.9 Note that ψt|Q = idQ since
Xt|Q = 0. We compute now that

d

dt
ψ∗t ωt = ψ∗t

(
d

dt
ωt + LXtωt

)
= ψ∗t (dσ + dιXtωt)

= 0.

Hence ψ∗1ω1 = ψ∗0ω0 = ω0. Thus the desired diffeomorphism is ψ1 and the desired
neighborhoods are N0 and N1. The above argument is known as Moser’s trick,
and is extremely useful in symplectic geometry.

It remains to construct a smooth one-form σ satisfying σ|TQM = 0 and dσ =
ω1−ω0. If Q were a point (or more generally, diffeomorphic to a star-shaped subset
of Euclidean space), we could simply use the Poincaré lemma; in general, however
the construction is as follows. Fix any Riemannian metric on M and consider the

8Why?
9Why?
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restriction of the exponential map exp : TM → M to a neighbhorhood Uε of the
zero section of the normal bundle TQ⊥ →M :

Uε = {(q, v) ∈ TM | q ∈ Q, v ∈ TqQ⊥, |v| < ε}.

Recall that exp becomes a diffeomorphism for ε sufficiently small, so we choose ε
such that N0 = exp(Uε) is contained in the neighborhood of Q above on which ωt
is nondegenerate. Define now a family of maps φt : N0 → N0 for t ∈ [0, 1] by

φt(exp(q, v)) = exp(q, tv).

Note that φt is a diffeomorphism onto its image for t 6= 0. Moreover, φt|Q = idQ,
φ0(N0), and φ1 = idN0 . If we now write τ = ω1 − ω0, we find that

φ∗0τ = 0

φ∗1τ = τ,

since τ = 0 on TQM . Now, for t ∈ (0, 1], we define a family of vector fields,

Yt =

(
d

dt
φt

)
◦ φ−1t .

Then for any δ > 0,

φ∗1τ − φ∗δτ =

∫ 1

δ

d

dt
φ∗t τdt =

∫
δ

φ∗tLYtτdt

=

∫ 1

δ

φ∗t (dιYtτ)dt

= d

∫ 1

δ

φ∗t (ιYtτ)dt

Clearly φ∗1τ − φ∗δτ = τ − φ∗δτ approaches τ as δ → 0+, so we find that

τ = d

∫ 1

0

φ∗t (ιYtτ)dt.

Defining

σ =

∫ 1

0

φ∗t (ιYtτ)dt,

we find that τ = ω1−ω0 = dσ and σ|TQM = 0 because φt|Q = idQ and τ = 0 on Q,
forcing the integrand to vanish on TQM . Hence σ is the one-form required above
for Moser’s trick, and we are done.10 �

The proof of Darboux’s theorem is now straightforward: we choose a coordinate
chart φ so that φ∗ω is equal to the standard form on a subset of R2n at a single
point, and then apply Moser’s theorem with Q equal to the chosen point.

Proof of Darboux’s theorem. Let q ∈ M and fix a symplectic basis {ui, vi} for the
symplectic vector space (TqM,ωq). Fix any Riemannian metric on M and pick an
open U 3 0 small enough such that exp restricted to U ⊂ TqM is a diffeomorphism

10Why is σ smooth?
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and hence a chart (xi, yi) = exp : U ⊂ R2n → M (i = 1, . . . , n) such that xi(p) =
yi(p) = 0. Now we can compute, for example,

exp∗ ωp

(
∂

∂xj
,
∂

∂yk

)
= ωp

(
exp∗

∂

∂xj
, exp∗

∂

∂yk

)
= ωp (uj , vk) = δjk,

to check that exp∗ ωp = (ω0)0 where ω0 is the standard form on T0U . Here we
have used the fact that exp∗ = id at 0 ∈ U . Applying Theorem 2.1 to U with
Q = 0 ∈ U , we obtain a diffeomorphism ψ of (some possibly smaller) U such
that ψ∗ exp∗ ω = ω0 on U . But now exp ◦ψ provides a symplectomorphism in a
neighborhood of q to a neighborhood of R2n pulling ω back to the standard form
ω0. �
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3. Week 3

3.1. Submanifolds of symplectic manifolds.

Definition 16. Let (V, ω) be a symplectic vector space. We define the symplectic
complement Uω of a subspace U ⊂ V as

Uω = {v ∈ V | ω(v, u) = 0 for all u ∈ U}.

Lemma 17. For any subspace U ⊂ V , Uωω = U and

dimU + dimUω = dimV.

Proof. Nondegeneracy of ω yields an isomorphism ιω : V → V ∗ which identifies Uω

with U⊥ ≡ {ν ∈ V ∗ | ν(u) = 0 for all u ∈ U}. The result now follows from the fact
that dimU + dimU⊥ = dimV . �

Definition 18. Let (M,ω) be a symplectic manifold. A submanifold Q ⊂ M is
called symplectic, isotropic, coisotropic, or Lagrangian if for each q ∈ Q, the
linear subspace TqQ ≡ Vq of (TqM,ωq) is

(a) symplectic: Vq ∩ V
ωq
q = 0,

(b) isotropic: Vq ⊂ V
ωq
q ,

(c) coisotropic: V
ωq
q ⊂ Vq,

(d) Lagrangian: Vq = V
ωq
q ,

respectively.

Remark 19. Note that Q ⊂ M is Lagrangian if and only if the restriction of ω to
Q is zero and dimQ = dimM/2.

Example 20. Let X be any manifold, and (M = T ∗X,ω) be its cotangent bun-
dle with the usual symplectic structure. Recall that ω = −dθ, where θξ(v) =
ξ(dxπ(v)).11 In coordinates, if (xi, ξi) are coordinates for M , we can write ω =
dxi ∧ dξi.

It is then easy to see that the fibre T ∗xX ⊂M is Lagrangian, as

0 = (dxi ∧ dξi)
(
aj

∂

∂ξj
, bk

∂

∂ξk
+ cl

∂

∂xl

)
= (dxi ∧ dξi)

(
aj

∂

∂ξj
, cl

∂

∂xl

)
= aici,

forces ci = 0.
Similarly, the zero section Γ0 ⊂M is Lagrangian, as

0 = (dxi ∧ dξi)
(
aj

∂

∂xj
, bk

∂

∂ξk
+ cl

∂

∂xl

)
= (dxi ∧ dξi)

(
aj

∂

∂xj
, bk

∂

∂ξk

)
= aibi,

forces bi = 0.

11Can we do this coordinate-invariantly?
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More generally, given a submanifold Q ⊂ L, the annihilator

TQ⊥ = {(q, ν) ∈ T ∗L | q ∈ Q, ν|TqQ = 0}
is Lagrangian.

Example 21. Let (M,ω) be a symplectic manifold. The product M × M can
be given a symplectic structure ω′ = απ∗1ω + βπ∗2ω for α, β ∈ R. Consider in
particular the case of α = 1, β = −1. Then it is clear that M × {m} and {m} ×M
are symplectic submanifolds. Moreover, the diagonal ∆ ⊂ M ×M is Lagrangian,
as

0 = ω′ ((u, u), (v, w))

= ω(u, v)− ω(u,w)

= ω(u, v − w)

and hence v = w, as desired.

Example 22. Let S ⊂ (M,ω) be a codimension 1 submanifold. Then S is
coisotropic. Indeed, fix s ∈ S, and note that TsS ⊂ TsM is codimension one.
By Lemma 17, TsS

ωs is a one-dimensional subspace. Pick any vector v ∈ TsSωs ;
v spans the entire symplectic complement, and hence if v is not in TsS

ωs , TsS ∩
TsS

ωs = 0 and TsS is symplectic and thus even-dimensional. This is a contradic-
tion, and hence TsS must be coisotropic.

Proposition 23. The graph Γσ ⊂ T ∗X of a one-form is Lagrangian if and only if
σ is closed.

Proof. Note that Γσ is defined to be the image of the embedding σ : X → T ∗X.
Then dim Γσ = n, so it remains to show that ω restricts to zero on Γσ if and only
if σ is closed. Using Proposition 2, we compute

dσ = dσ∗θ = σ∗dθ = −σ∗ω,
which yields the desired statement, as σ∗ω = 0 on X if and only if ω = 0 on Γσ,
by virtue of σ being an embedding. �

With these definitions out of the way, we present a number of theorems charac-
terizing neighbhorhoods of special submanifolds of symplectic manifolds.

Theorem 24 (Symplectic neighborhood theorem). Let (M0, ω0), (M1, ω1) be sym-
plectic manifolds with compact symplectic submanifolds Q0, Q1 respectively. Sup-
pose there is an isomorphism Φ : TQω0 → TQω1 of symplectic normal bundles cov-
ering a symplectomorphism φ : (Q0, ω0)→ (Q1, ω1). Then φ extends to a symplec-
tomorphism ψ : (N(Q0), ω0) → (N(Q1), ω1) such that dψ induces the map Φ on
TQω0 .

Proof. We use implicitly throughout that since Q is symplectic, there is an isomor-
phism TQω → TQ⊥. Let exp0, exp1 be diffeomorphisms mapping neighborhoods of
the zero section in the normal bundle to neighborhoods of Q0, Q1 in X, respectively.
Then we obtain

φ′ = exp1 ◦Φ ◦ exp−10 ,

a diffeomorphism between these neighborhoods of Q0 and Q1. Now φ′∗ω1 and ω0

are two symplectic forms on M0 whose restrictions to Q0 agree. Now φ′ extends to
the desired ψ by Theorem 2.1. �
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Theorem 25 (Lagrangian neighborhood theorem). Let (M,ω) be a symplectic
manifold and let L ⊂ M be a compact Lagrangian submanifold. Then there exists
a neighborhood N(Γ0) ⊂ T ∗L of the zero section Γ0, a neighborhood U ⊂ M of L,
and a diffeomorphism φ : N(Γ0)→ U such that φ∗ω = −dθ and φ|L = id, where θ
is the canonical one-form on T ∗L.

We postpone the proof of this theorem until after the discussion of complex
structures.

3.2. Contact manifolds. Let X be a differential manifold and H ⊂ TX be a
smooth hyperplane field, i.e. a smooth subbundle of codimension one. Then, locally
on some open U , we can write H = kerα, for α ∈ Ω1(U). In fact, if we assume
that H is coorientable, we can extend U to all of X.12 We will assume for what
follows that H is coorientable.

Definition 26. LetX be a manifold of odd dimension 2n+1. A contact structure
on X is a hyperplane field H = kerα where the top-dimensional form α ∧ (dα)n

is nowhere vanishing. We call α a contact form, and the pair (X,H) a contact
manifold.

Remark 27. Suppose we have α, α′ ∈ Ω1(X) such that H = kerα = kerα′. Then
α is a contact form if and only if α′ is. This is because the condition that α, α′ cut
out H requires α′ = fα for some nonzero f : X → R.

Remark 28. In the language of distributions, H can be described as a codimension
one distribution that is maximally non-integrable in the following sense. Recall
that a distribution on X is said to be integrable if every point p of X is contained
in a integral manifold of H, i.e. in a nonempty immersed submanifold N ⊂ X such
that TpN = Hp. The Frobenius theorem tells us that H is integrable if and only if
H is involutive, i.e. H is closed under the Lie bracket of local sections. Now, since

dα(X,Y ) = Xα(Y )− Y α(X)− α[X,Y ],

we find that H is integrable if and only if dα = 0 on H. Thus asking for dα to be
nondegenerate on H forces the distribution to be “as non-integrable as possible.”

Indeed, we obtain the above definition of a contact structure by noting that dα
is nondegenerate on H if and only if α∧ (dα)n is nowhere vanishing, as follows. By
remark 5, dα is nondegenerate on H if and only if (dα)n is nowhere vanishing, but
this is simply equivalent to asking that α ∧ (dα)n be nowhere vanishing.

Armed simply with the definition of a contact manifold, one might think that
contact geometry is somewhat obscure. We provide the following list of examples
as evidence that contact manifolds are actually quite common.

Example 29. Let X = R2n+1 with coordinates (x1, . . . , xn, y1, . . . , yn, z). The
one-form

α = dz + xidyi

is a contact form, as

α ∧ (dα)n = dz ∧ dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn,
which is nowhere vanishing. We define the standard contact structure on R2n+1 to
be H = kerα.

12Why?
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For the next few examples the following lemma will be useful.

Lemma 30. Let (M,ω) be a symplectic manifold of dimension 2n. A vector field
Y on M satisfying LY ω = ω is called a Liouville vector field. In this case,
α = ιY ω is a contact form on any hypersurface Q ⊂ M transverse to Y (i.e. at
any point p, TpQ and Yp span TpM).

Proof. Cartan’s magic formula in this case tells us that ω = dιY ω, and hence

α ∧ (dα)n−1 = ιY ω ∧ ωn−1

= ιY (ωn)/n.

Now, since ωn is a volume form on M , we find that α ∧ (dα)n−1 is a volume form
when restricted to the tangent bundle of any hypersurface transverse to Y . �

Example 31. Consider M = R4 with its usual symplectic form ω = dx1 ∧ dy1 +
dx2 ∧ dy2. The vector field

Y =
1

2

(
x1

∂

∂x1
+ y1

∂

∂y1
+ x2

∂

∂x2
+ y2

∂

∂y2

)
is clearly transverse to the sphere S3 given by (x1)2 + (y1)2 + (x2)2 + (y2)2 = 1. It
is a straightforward computation to check that Y is Liouville, using the identity

(LY ω)(v, w) = LY (ω(v, w))− ω([Y, v], w)− ω(v, [Y,w]).

We conclude, using the previous lemma, that S3 is a contact manifold, with a
contact structure ker ιY ω. This example is easily extended to show that S2n+1 has
a contact structure.

Example 32. Let (M, g) be a Riemannian n-manifold. We define the unit cotan-
gent bundle

ST ∗M = {(p, ξ) ∈ T ∗M | |ξp|2g = 1} ⊂ T ∗M.

The unit cotangent bundle is a manifold of dimension 2n−1 as it can be written as
the level set of a Hamiltonian H(p, ξ) = |ξp|2g/2. Moreover, it is a sub-fiber bundle

of the cotangent bundle, with fiber Sn−1. We claim that the canonical one-form on
T ∗M is a contact form for ST ∗M . Indeed, let Y be a vector field on T ∗M given
by ιY ω = θ. Then Y is Liouville: d(ιY ω) = dθ = ω. In coordinates, Y = pi∂/∂pi,
and hence is transverse to ST ∗M . Note that if M is compact, so is SY ∗M and in
this case ST ∗M is an example of a compact contact manifold.

Example 33. Let (M,H = kerα) be a contact manifold. Then, if πM : M ×R→
M is the projection onto the second factor, we claim that (M × R, ω = d(etπ∗Mα))
is a symplectic manifold. Indeed, if M has dimension 2n− 1, we compute

ωn = (etdt ∧ π∗Mα+ π∗Mdα)n

= nentdt ∧ π∗Mα ∧ π∗M (dα)n−1

= nentdt ∧ π∗M
(
α ∧ (dα)n−1

)
6= 0.

We call (M × R, d(etπ∗Mα)) the symplectization of (M,α). Note that ∂/∂t is a
Liouville vector field for ω13 and M ⊂M ×R is a hypersurface transverse to ∂/∂t.

13compute!
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Definition 34. A contactomorphism from (M1, H1) to (M2, H2) is a diffeomor-
phism f : M1 → M2 such that df(H1) = H2. Equivalently, if H1 = kerα1 and
H2 = kerα2 then we require f∗α2 = gα1 for some nowhere vanishing function
g : M1 → R \ {0}.
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4. Week 4

4.1. Symplectic linear group and linear complex structures.

Definition 35. Let (V, ω) be a symplectic vector space. We denote the group of
symplectomorphisms from V to itself as Sp(V, ω), the symplectic linear group.
In the case of the standard symplectic structure on R2n we write the group as
Sp(2n).

Lemma 36. A real 2n× 2n matrix Ψ is in Sp(2n) if and only if

Ψ>J0Ψ = J0,

where

J0 =

(
0 −In
In 0

)
∈ Sp(2n).

Proof. Let ui, vi be a symplectic basis for V . For x, y ∈ V write x = (a, b), y = (c, d)
for a, b, c, d ∈ Rn. Then

ω(x, y) = aidi − bici = −x>J0y.

Clearly Ψ∗ω = ω if and only if Ψ>J0Ψ = J0. �

Definition 37. Let V be a vector space. A complex structure on V is an
automorphism J : V → V such that J2 = − idV . We denote the set of all complex
structures on V by J (V ). Now suppose (V, ω) is a symplectic vector space. We
say that a complex structure J is compatible with ω if

ω(Jv, Jw) = ω(v, w)

for all v, w ∈ V , and
ω(v, Jv) > 0

for all nonzero v ∈ V . We denote the set of all compatible complex structures on
(V, ω) by J (V, ω).

Lemma 38. Let J ∈ J (V, ω) be a compatible complex structure on (V, ω). Then

gJ(v, w) = ω(v, Jw)

defines an inner product on V .

Lemma 39. Let (V, ω) be a symplectic vector space and J be a complex structure
on V . Then the following are equivalent:

(a) J is compatible with ω;
(b) the bilinear form gJ : V × V → R defined by

gJ(v, w) = ω(v, Jw)

is symmetric, positive-definite, and J-invariant.
(c) if we view V as a complex vector space with J as its complex structure, the

form H : V × V → C defined by

H(v, w) = ω(v, Jw) + iω(v, w)

is complex linear in w, complex antilinear in v, satisfies H(w, v) = H(v, w),
and has a positive-definite real part. Such a form is called a Hermitian inner
product on (V, J).
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Proof. That (a) implies (b) is clear from Lemma 38. For (b) implies (c), note first
that the real part of H is simply gJ and hence is positive-definite. For linearity, we
compute

H(Jv,w) = ω(Jv, Jw) + iω(Jv,w)

= gJ(Jv,w)− igJ(w, v)

= gJ(w, Jv)− igJ(v, w)

= −iH(v, w),

and

H(v, Jw) = −ω(v, w) + iω(Jv, Jw)

= −ω(v, w) + igJ(Jv,w)

= −ω(v, w) + iω(v, w)

= iH(v, w),

as desired. Finally, note that

H(w, v) = ω(w, Ju) + iω(w, v)

= ω(v, Jw)− iω(v, w)

= H(v, w).

For (c) implies (a), ω(v, Jv) > 0 because the real part ω(v, Jw) is by hypothesis
positive-definite. Moreover, ω(Jv, Jw) = imH(Jv, Jw) = imH(v, w) = ω(v, w).

�

The following result shows that all linear complex structures are isomorphic to
the standard complex structure.

Proposition 40. Let V be a 2n-dimensional real vector space and let J ∈ J (V ).
Then there exists a vector space isomorphism Φ : R2n → V such that

JΦ = ΦJ0.

Proof. Consider the extension JC of J to the complexification V C = V ⊗R C ∼= V
given by J ⊗ 1. Clearly JC is a complex structure on V C and thus has eigenvalues
±i. We obtain a direct sum decomposition V C ∼= E+ ⊕ E− of the ±i eigenspaces
respectively, i.e. JC|E± = ±iI. Clearly dimCE

± = n. We claim that a basis
wj = uj + ivj for E+ yields a basis uj , vj for V . It suffices to show that these
vectors are linearly independent. Since wj is a basis for E+,

n∑
j=1

(aj + ibj)(uj ⊗ 1 + vj ⊗ i) = 0

for aj , bj ∈ R implies that aj = bj = 0 for all j. Suppose there exist αj , βj ∈ R
such that

n∑
j=1

αjuj + βjvj = 0.
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Now since wj ∈ ker(I − iJ), a straightforward computation reveals that Juj = −vj
and Jvj = uj . Applying J to the above equation, we obtain

n∑
j=1

βjuj − αjvj = 0.

Then, taking aj = βj , bj = αj , we find that

n∑
j=1

(βj + iαj)(uj ⊗ 1 + vj ⊗ i) =

 n∑
j=1

βjuj − αjvj

⊗ 1 +

∑
j=1

βjvj + αjuj

⊗ i
= 0.

Linear independence of the wj now forces αj = βj = 0. Hence uj , vj forms a basis
for V .

The required Φ : R2n → V can now be written explicitly as

Φ(x1, . . . , xn, y1, . . . , yn) =

n∑
j=1

(xjuj − yjvj) .

This map is clearly an isomorphism; moreover, if x = (r1, . . . , rn, s1, . . . , sn) ∈ R2n

then

JΦx = −s1u1 − r1v1 − · · · − snun − rnvn = ΦJ0x,

as desired. �

Remark 41. Define an action of GL(2n,R) on the set J (V ) by g · J = g−1Jg. By
Lemma 40, GL(2n,R) · J0 = J (V ), i.e. the orbit of J0 is the entire set. More-
over, since GL(n,C) is naturally embedded (as a Lie subgroup) in GL(2n,R) as
{A ∈ GL(2n,R) | J0A = AJ0}, the stabilizer of J0 is GL(n,C).14 We conclude
that J (V ) can be given the structure of a smooth manifold such that J (V ) ∼=
GL(2n,R)/GL(n,C).

The following result shows that the choice of complex structure compatible with
a fixed symplectic form on V is canonical up to homotopy.

Proposition 42. The set J (V, ω) of compatible complex structures is naturally
identified with the space P of symmetric positive-definite symplectic matrices. In
particular, J (V, ω) is contractible.

Proof. By fixing a symplectic basis for V we may assume that (V, ω) = (R2n, ω0).
By the proof of Lemma 36, we note that J ∈ Aut(R2n) is a compatible complex
structure if and only if the conditions

J2 = − idR2n ,

J0 = J>J0J,

0 < −v>J0Jv,

hold (for v 6= 0). Set P = J0J . P is symmetric, since

(J0J)> = −J>J0 = J>J0J
2 = J0J,

14The embedding is given by replacing each entry a+ bi with a block of the form

(
a −b
b a

)
.
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as well as positive-definite, and symplectic. Moreover, it is easy to check that if any
matrix P has these three properties, then J = −J0P is a compatible complex struc-
ture. Hence J (V, ω) is in bijective correspondence with the space P of symmetric
positive-definite symplectic matrices. It remains to show that P is contractible.
Suppose, for now, that if P ∈ P then Pα ∈ P for all α > 0, α ∈ R. Then the map
h : [0, 1]×P → P given by h(t, P ) = P 1−t is a homotopy from idP to the constant
map P 7→ idV , and we are done.

We now show that if P ∈ P then Pα ∈ P for all α > 0. It is easy to see that Pα is
symmetric and positive-definite. It remains to show that ω0(Pαv, Pαw) = ω0(v, w)
for all α > 0. Decompose R2n into eigenspaces Vλ for eigenvalues λ of P . Note
that for a symplectic matrix P , if λ, λ′ are eigenvalues such that λλ′ 6= 1 then
ω0(z, z′) = 0, where z, z′ are the eigenvectors of λ, λ′, respectively:

λλ′ω0(z, z′) = ω0(Pz, Pz′) = ω0(z, z′).

Now, since Vλ is also the eigenspace for the eigenvalue λα for Pα, if z ∈ Vλ, z′ ∈ Vλ′ ,
ω0(Pαz, Pαz′) = (λλ′)αω0(z, z′).

Writing any v, w ∈ R2n in the basis of eigenvectors for Pα, we find by linearity, and
the remarks about λ, λ′ above, that ω0(Pαv, Pαw) = ω0(v, w) for all α > 0. �

Often it is enough to consider a slightly weaker notion of compatibility.

Definition 43. A complex structure J ∈ J (V ) is called ω-tame if ω(v, Jv) > 0
for all nonzero v ∈ V . The set of all ω-tame complex structures on V is written
Jτ (V, ω). Note that Jτ (V, ω) is an open subset of J (V ) ∼= GL(2n,R)/GL(n,C)
(as per Remark 41).

In this case, we note that gJ(v, w) = (ω(v, Jw) + ω(w, Jv))/2 defines an inner
product on V , for all J ∈ Jτ (V, ω). We note that there is an analog of Proposition
42 for ω-tame complex structures.

Proposition 44. The space Jτ (V, ω) is contractible.

Proof. See, for instance, McDuff/Salamon or Gromov. �

4.2. Symplectic vector bundles.

Definition 45. A symplectic vector bundle (E,ω) overX is a real vector bundle
π : E → X together with a smooth symplectic bilinear form ω ∈ Γ(X,E∗∧E∗), i.e.
a symplectic bilinear form on each Ex that varies smoothly with x. A complex
structure on π : E → M is a bundle automorphism J : E → E such that
J2 = − idE . We say J is compatible with ω if the induced complex structure on Ex
is compatible with ωx for all x ∈ X. We thus obtain a symmetric, positive-definite
bilinear form gJ ∈ Γ(X,Sym2E∗), and we call the triple (E,ω, gJ) a Hermitian
structure on E.

Theorem 46. Let E → X be a 2n-dimensional vector bundle. For any symplectic
structure ω on E, the space of compatible complex structures is nonempty and
contractible. For any complex structure J on E, the space of symplectic structures
compatible with J is nonempty and contractible.

Proof. See McDuff/Salamon.15 �

15Understand this!
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We now prove the Theorem 25, the Lagrangian neighborhood theorem, with the
help of the following lemma.

Lemma 47. Let J ∈ J (V, ω). Then a subspace Λ ⊂ V is Lagrangian if and only
if JΛ⊥ = Λ with respect to gJ .

Proof. For v ∈ Λ, w ∈ V , the assertion that

gJ(Jv,w) = ω(Jv, Jw) = ω(v, w) = 0

implies that Λ is Lagrangian if and only if JΛ⊥ = Λ. �

Theorem 48 (Lagrangian neighborhood theorem). Let (M,ω) be a symplectic
manifold and let L ⊂ M be a compact Lagrangian submanifold. Then there exists
a neighborhood N(Γ0) ⊂ T ∗L of the zero section Γ0, a neighborhood U ⊂ M of L,
and a diffeomorphism φ : N(Γ0)→ U such that φ∗ω = −dθ and φ|L = id, where θ
is the canonical one-form on T ∗L.

Proof. By Theorem 46, we can fix an arbitrary complex structure J on the tangent
bundle TM and denote the associated metric by gJ . Note that the metric yields a
diffeomorphism of bundles Φ : T ∗L→ TL given by

gJ(Φq(v
∗), v) = v∗(v)

for v ∈ TqL, v∗ ∈ T ∗q L. Now the map φ : T ∗L→M defined by

φ(q, v∗) = expq(JqΦqv
∗)

is a diffeomorphism from some neighborhood N(Γ0) of Γ0 onto its image U , where
exp is the exponential map on M corresponding to gJ .

Now if v = (v0, v
∗
1) ∈ T(q,0)T ∗L = TqL⊕ T ∗q L, we claim that

dφ(q,0)(v) = v0 + JqΦqv
∗
1 .

By linearity, it suffices to compute dφ(q,0) on TqL and T ∗q L separately. In partic-
ular, let c : [0, 1] → TM be a curve given by c(t) = (a(t), 0), with c′(0) = (v0, 0).
Then

dφ(q,0)(v0, 0) =
d

dt

∣∣∣∣
t=0

expa(t)
(
Ja(t)Φa(t)0

)
=

d

dt

∣∣∣∣
t=0

a(t)

= v0.

Next take c(t) = (q, tv∗1). Clearly c′(0) = (0, v∗1). Then

dφ(q,0)(0, v
∗
1) =

d

dt

∣∣∣∣
t=0

expp(JpΦptv
∗
1)

= JpΦpv
∗
1 ,

as desired.
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We can now compute, for v = (v0, v
∗
1), w = (w0, w

∗
1) ∈ T(q,0)T ∗L,

φ∗ω(q,0)(v, w) = ωq (v0 + JqΦqv
∗
1 , w0 + JqΦqw

∗
1)

= ωq(v0, JqΦqw
∗
1)− ωq(w0, JqΦqv

∗
1)

= gJ(v0,Φqw
∗
1)− gJ(w0,Φqv

∗
1)

= w∗1(v0)− v∗1(w0)

= −dθ(q,0)(v, w).

This shows that φ∗ω = −dθ on the zero section. Now the result follows from
Moser’s trick, Theorem 2.1. �
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5. Week 5

5.1. Almost complex manifolds.

Definition 49. Let M be a 2n-dimensional real manifold. An almost complex
structure on M is a complex structure J on the tangent bundle TM . In this
situation we say that (M,J) is an almost complex manifold. The almost complex
structure is compatible with a nondegenerate two-form ω on M if J is compatible
with ω.

Theorem 50. For each nondegenerate two-form ω on M the space of almost com-
plex structures compatible with ω is nonempty and contractible. Conversely, for
every almost complex structure on M the space of compatible nondegenerate two-
forms is nonempty and contractible.

Proof. See Theorem 46. �

Example 51. Let X ⊂ R3 be an oriented hypersurface. Let ν : X → S2 be the
Gauss map, which assigns to each point x ∈ X the outward-pointing normal vector
ν(x) ⊥ TxX. Define, for u ∈ TxX,

Jxu = ν(x)× u,

where the product is the vector (cross) product on R3. It follows from the vector
triple product identity a× (b× c) = b(g(a, c))− c(g(a, b)), where g is the standard
metric on R3, that J2

x = − idTxX . Define a two-form ω on X by

ω(v, w) = ι(ν(x))Ω

= g(ν(x), v × w),

where Ω(u, v, w) is the determinant of the matrix whose columns are u, v, w. It is
straightforward to check that J is compatible with ω: for v, w ∈ TxX,

ω(Jxv, Jxw) = g (ν(x), (ν(x)× v)× (ν(x)× w))

= g (ν(x), ν(x)g(ν(x)× v, w))

= g(w, ν(x)× v)

= g(ν(x), v × w)

= ω(v, w)

ω(v, Jxv) = g(ν(x), v × (ν(x)× v))

= g(ν(x), g(v, v)ν(x))

= g(v, v)

> 0,

where we have used the vector triple product identity as well as the cyclic property
of the scalar triple product.

Example 52. Consider S2 ⊂ R3 with the almost complex structure J from the
previous example. We compute the expression of J in stereographic coordinates.
Recall we have φ : S2 − (0, 0, 1)→ R2 given by

φ(x, y, z) =

(
x

1− z
,

y

1− z

)
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and inverse

ψ(X,Y ) =

(
2X

1 +X2 + Y 2
,

2Y

1 +X2 + Y 2
,
X2 + Y 2 − 1

X2 + Y 2 + 1

)
.

For a point p = (x, y, z) ∈ S2 and a vector u = (v, w) ∈ TpS2, some computation
reveals that

Jp(v, w) = dφ ((x, y, z)× dψ(v, w))

= (w,−v).

Definition 53. Let (X, J) be an almost complex manifold. We define the Nijen-
huis tensor NJ by

NJ(v, w) = [v, w] + J [Jv,w] + J [v, Jw]− [Jv, Jw]

for v, w vector fields on X.

Lemma 54. The Nijenhuis tensor is a skew-symmetric covariant (2,0)-tensor on
X satisfying

(a) NJ(v, Jv) = 0 for all vector fields v;
(b) NJ0 = 0;
(c) If φ ∈ Diff(M) and v, w are vector fields then

Nφ∗J(φ∗v, φ∗w) = φ∗NJ(v, w).

Proof. Writing v = vi∂/∂xi, w = wi∂/∂xi in local coordinates, the Lie bracket
[v, w] becomes16

[v, w] =

(
wj

∂vi

∂xj
− vj ∂w

i

∂xj

)
∂

∂xi
.

Finish this. �

Suppose now that (X, J) is an almost complex manifold. Denote by TCX
the complexification of the real vector bundle TX, i.e. TCX = TX ⊗ C. We
note that the complexified tangent bundle splits into ±i J-eigenbundles TCX =
T 1,0X ⊕ T 0,1X, respectively.17 These are often referred to as the holomorphic and
antiholomorphic tangent bundles of X.

Definition 55. Let X be an almost complex manifold. We define the vector
bundles ∧k

C
X ≡

∧k
(TCX)∗∧p,q

X ≡
∧p

(T 1,0X)∗ ⊗C
∧q

(T 0,1X)∗.

and write AkX,C and Ap,qX for their sheaves of sections, respectively. We denote the

projections A• → Ak and A• → Ap,q by Πk and Πp,q respectively. It is not hard
to show that ∧k

C
X =

⊕
p+q=k

∧p,q
X

AkC =
⊕
p+q=k

Ap,q

16We follow McDuff/Salamon in the convention that [v, w] ≡ −Lvw.
17Here, J is really J ⊗ C.
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and additionally, that
∧p,q

X =
∧q,p

X and Ap,q = Aq,p. Now if d : AkC → A
k+1
C is

the exterior derivative18, we write

∂ ≡ Πp+1,q ◦ d
∂̄ ≡ Πp,q+1 ◦ d,

and ∂, ∂̄ satisfy the appropriate graded Leibniz rule.

With this notation now set, we come to the key definition.

Proposition 56. Let (X, J) be an almost complex manifold. Then the following
conditions are equivalent:

(a) d = ∂ + ∂̄ on A•;
(b) Π0,2 ◦ d = 0 on A1,0;
(c) [T 0,1X,T 0,1X] ⊂ T 0,1X;
(d) NJ = 0.

If X satisfies one of these equivalent conditions then J is said to be an integrable
almost complex structure.

Proof. We show that (a) is equivalent to (b), (b) is equivalent to (c), and that (c)
is equivalent to (d).

For (a)↔(b), suppose first that d = ∂ + ∂̄ and α ∈ A1,0. Then

Π0,2dα = Π0,2(∂ + ∂̄)α

= Π0,2(Π2,0 + Π1,1)dα

= 0.

Conversely, suppose Π0,2d = 0 on A1,0. Clearly d = ∂ + ∂̄ if and only if dα ∈
Ap+1,q ⊕ Ap,q+1 for all α ∈ Ap,q. Now any α ∈ Ap,q can locally be written as
a linear combination of terms of the form fIJwi1 ∧ · · · ∧ wip ∧ w′j1 ∧ · · · ∧ w

′
jq

,

with the w ∈ A1,0 and w′ ∈ A0,1. Then dα is expressed as a linear combination
of terms involving dfIJ , dwi, and dw′j . We have that df ∈ A2

C = A1,0 ⊕ A0,1,

which takes care of the terms containing dfIJ . Similarly, since Π0,2d = 0 on A1,0

by assumption, dwi ∈ A2,0 ⊕ A1,1, which takes care of the terms containing the
dwi. Finally, we have that dw′j ∈ A1,1 ⊕ A0,2 since Π2,0d = 0 on A0,1 (seen by
conjugating (b)), which takes care of the terms containing the dw′j . We conclude

that dα ∈ Ap+1,q ⊕Ap,q+1, as desired.
We now prove (b)↔(c). Fix any α ∈ A1,0 and v, w sections of T 0,1. Then, by

definition of dα, and since α vanishes on T 0,1, we find that

(dα)(v, w) = vα(w)− wα(v)− α[v, w]

= −α[v, w].

We conclude that Π0,2d = 0 if and only if [v, w] ∈ T 0,1.
We now prove (c)↔ (d). Suppose for now that any section of T 0,1 can be written

as v + iJv for v a section of TX ⊗ C. Then

[v + iJv, w + iJw] = [v, w]− [Jv, Jw]− i ([Jv,w] + [v, Jw]) .

This is of the form u+ iJu if and only if

J ([v, w]− [Jv, Jw]) = [Jv,w] + [v, Jw],

18Here, d is really d⊗ C.
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which is equivalent to NJ(v, w) = 0. It remains to show that any section of T 0,1

can be written as v + iJv. Finish this. �

Example 57. Let X be a complex manifold. Then we have local coordinates zi, z̄i
for i = 1, . . . , n and the standard almost complex structure J0 acting as i on ∂/∂zi
and −i on ∂/∂z̄i. Now we note that for α ∈ Ap,q written α = αIJdz

I ∧ dz̄J , we
have

dα =

(
∂αIJ
∂zk

dzk +
∂αIJ
∂z̄k

dz̄k
)
∧ dzI ∧ dz̄J .

Clearly then d = ∂ + ∂̄, as ∂ = Πp+1,qd and ∂̄ = Πp,q+1. Hence, by Proposition
56(a), J0 is integrable.

The above example shows that complex manifolds induce integrable almost com-
plex structures on their underyling real manifolds in a natural way. It is a highly
nontrivial fact that the converse is also true.

Theorem 58 (Newlander-Nirenberg, 1957). Let (X, J) be an almost complex man-
ifold. Then J is integrable if and only if X has a holomorphic atlas (making it a
complex manifold) such that the induced almost complex structure is J .

Example 59. Let (X, J) be a two-dimensional almost complex manifold. In this
case A2

C = A1,1 and hence by Proposition 56(b), we find that J is integrable.
We conclude using the Newlander-Nirenberg theorem that every two-dimensional
almost complex manifold is in fact a complex manifold.

Example 60. It turns out that there exists a vector product on R7 that is bilinear
and skew-symmetric, and hence it follows along the lines of Example 51 that every
oriented hypersurface X ⊂ R7 carries an almost complex structure. This argument
shows, in particular, that S6 is an almost complex manifold. It was shown by
Calabi, however, that this almost complex structure is not integrable. Indeed, the
existence of an integrable almost complex structure on S6 is still an open problem.

5.2. Kähler manifolds.

Definition 61. A Kähler manifold is a symplectic manifold (M,ω) equipped with
an integrable almost complex structure J ∈ J (M,ω).

Example 62. The most basic example of a Kähler manifold is (R2n, ω0, J0). In-
deed, viewing R2n as Cn we can introduce coordinates zi = xi + iyi, z̄i = xi − iyi
with respect to which T 1,0Cn and T 0,1Cn are trivialized by the frames ∂/∂zi and
∂/∂z̄i, respectively. Then it is straightforward to check that d = ∂ + ∂̄ on A•C. In
these coordinates,

dzi = dxi + idyi

dz̄i = dxi − idyi.
and a easy computation reveals that the symplectic form ω0 can be written

ω0 =
i

2

n∑
i=1

dzi ∧ dz̄i.

In fact, if we let f =
∑n
i z̄

izi, we can write ω0 = i∂∂̄f/2.

Example 63. Every two-dimensional symplectic manifold is Kähler with respect
to any compatible almost complex structure.
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Example 64 (Complex projective space). Let Pn denote the complex projective
space, which is a complex manifold of dimension n. Let J be the induced integrable
almost complex structure.
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6. Week 6

6.1. Poisson brackets.

Definition 65. Let (M,ω) be a symplectic manifold. We say that a vector field
X ∈ X (M) is symplectic if

d(ι(X)ω) = 0,

or equivalently,
LXω = 0.

We denote the Lie algebra of symplectic vector fields by X (M,ω).

Proposition 66. Let M be closed and let X ∈ X (M) be a smooth vector field with
flow F : I ×M → M . Then Ft is a symplectomorphism for all t if and only if X
is symplectic.

Proof. Note that F ∗t ω : I → Γ(M,
∧2

T ∗M) gives us a smooth curve in the vector

space Γ(M,
∧2

T ∗M). Then

d

dt
(F ∗t ω) =

d

ds

∣∣∣∣
s=0

(
F ∗s+tω

)
= F ∗t LXω
= F ∗t d(ιXω)

and we see that the curve is constant at ω if and only if X ∈ X (M,ω).19 �

For the most part, we will focus on a subset of symplectic vector fields known as
Hamiltonian vector fields (also introduced in section 1).

Definition 67. Let H : M → R be a smooth function and let XH be the vector
field determined uniquely by

ιXHω = dH.

We say that XH is a Hamiltonian vector field for the Hamiltonian H. If M
is closed, XH generates a smooth one-parameter group of symplectomorphisms F tH
as its flow. We call this the Hamiltonian flow associated to H. Computing as in
the proof of the proposition above, we find that

d

dt

(
(F tH)∗H

)
= XHH = dH(XH)

= (ιXHω)(XH)

= ω(XH , XH)

= 0.

We conclude that H is constant along the Hamiltonian flow.

Example 68. Sphere with cylindrical polar coordinates and H the height function.

Definition 69. Let k be a field. A Poisson algebra A over k is an k-vector space
equipped with bilinear products · and {·, ·} such that

(a) the product · gives A the structure of an associative k-algebra;
(b) the bracket {·, ·} gives A the structure of a Lie algebra;
(c) the bracket {·, ·} is a k-derivation over the product ·.

19Understand this computation better.
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Proposition 70. Let (M,ω) be a symplectic manifold. Define a product on C∞(M)
as

{f, g} ≡ ω(Xf , Xg).

Then C∞(M) forms a real Poisson algebra.

Proof. That C∞(M) is an associative R-algebra under multiplication is clear (in
fact, it is even commutative). Now, since

ιXf1+Xf2ω = ιXf1ω + ιXf2ω = df1 + df2 = d(f1 + f2) = ιXf1+f2
ω.

uniqueness forces Xf1 + Xf2 = Xf1+f2 . It follows immediately that the Poisson
bracket is bilinear. That the bracket is alternating follows from the fact that ω is.
Similarly, since

ιgXh+hXgω = gιXhω + hιXgω = gdh+ hdg = d(gh) = ιXghω,

we conclude that Xgh = gXh + hXg, and hence

{f, gh} = ω(Xf , Xgh) = gω(Xf , Xh) + hω(Xf , Xg) = g{f, h}+ h{f, g},
which proves the derivation property (that the bracket is zero on a constant in R
is easy to check).

It remains to check the Jacobi identity

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

Using anticommutativity and the fact that

{f, g} = (ιXfω)(Xg) = df(Xg) = Xgf,

we can rewrite the left-hand side as

XfXgh−XgXfh+X{f,g}h = −[Xf , Xg]h+X{f,g}h.

Hence it suffices to show that X{f,g} = [Xf , Xg]
20 To see this, note that

LXf ιXgω = dιXf ιXgω = d{g, f} = ιX{g,f}ω

and, using Cartan’s (second magic) formula,21

LXf ιXgω = ιLXfXgω + ιXgLXfω = ι[Xg,Xf ]ω

(since LXfω = 0), so
ιX{g,f}ω = ι[Xf ,Xg ]ω.

Now uniqueness implies that X{f,g} = [Xf , Xg], as desired. �

A manifold equipped with a Poisson algebra structure on its smooth functions
is called a Poisson manifold. The previous proposition shows that every symplectic
manifold is a Poisson manifold. The following example shows that the converse is
not true, as a Poisson manifold can have arbitrary dimension.

Example 71 (Lie-Poisson structure). Let g be a real Lie algebra. Denote by g∗ the
dual vector space. Treating g∗ as a manifold, we note that the de Rham differential
of f ∈ C∞(g∗) is dfα : Tαg

∗ = g∗ → R for α ∈ g∗. Since g∗∗ is naturally identified
with g, it is easy to check that

{f, g}(α) = α[dgα, dfα].

provides a Poisson structure on g∗.

20We follow Mcduff/Salamon in the convention that [X,Y ] = −LXY .
21See Morita’s Geometry of Differential Forms, Theorem 2.11(1).
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Note that the Poisson algebras in the two examples above are commutative in
the product ·, but these need not be the case in general.

Morphisms in the category of Poisson manifolds? (see Wikipedia)
What happens if H : M → R is Morse? This implies that dH : M ↪→ T ∗M

intersects the zero section of T ∗M transversely. What does this give us?
Can we extend the Poisson structure to the exterior algebra of forms?

6.2. Group actions. Before discussing group actions on symplectic manifolds, we
review some basic notions from Lie theory. Let G be a Lie group and g = TeG be
its Lie algebra, and denote left (right) multiplication by g as Lg (Rg).

Lemma 72. There is a Lie algebra isomorphism between the Lie algebra g of G
and the space of left-invariant vector fields on G. In particular X ∈ g is sent to the
vector field X̃ satisfying (L∗gX̃)h = X̃gh for all g ∈ G such that X̃e = X.

Lemma 73. The left-invariant vector fields on G are complete, i.e. their flows
define diffeomorphisms of G.

Proof. By the uniqueness of integral curves, it suffices to show that if γ : I → G is
an integral curve then Lg ◦ γ is as well. This is a straightforward computation:

d

dt
(Lg ◦ γ) = (dLg ◦ dγ)

(
d

dt

)
= dLg(Xγ(t))

= XLg◦γ(t),

as desired. �

Definition 74. The exponential map is the smooth map exp : g→ G given by

exp(ξ) = φ1ξ(e),

where φ1ξ : G → G is the time 1 flow associated to the left-invariant vector field ξ̃.

It is easy to see that exp(tξ) = φtξ(e). Moreover, if [ξ, η] = 0 then exp(ξ + η) =

exp(ξ) exp(η). Finally, for a morphism f : G → H of Lie groups, we obtain a
commutative diagram

G H

g h

f

dfe

exp exp

which we will refer to as the naturality of exp. Note that the differential at e of a
Lie group homomorphism is a Lie algebra homomorphism, as is dfe here.

We now consider the symplectic case.

Proposition 75. The Lie algebra of the Lie group of symplectomorphisms Symp(M,ω)
is the space of symplectic vector fields X (M,ω).

Proof. This involves dealing with time-dependent vector fields, so I’ll work through
it later.22 �

22Finish
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Now suppose G acts on (M,ω) symplectomorphically, i.e. there is a group ho-
momorphism ψ : G→ Symp(M,ω) taking g 7→ ψg. Differentiating this map at the
identity yields a Lie algebra homomorphism dψe : g → X (M,ω). We denote the
image of ξ ∈ g under dψe by ξM . Now let c : G → Aut(G) be the conjugation
homomorphism cgh = ghg−1 and denote by Ad : G → Aut(g) the homomorphism
taking g to (dcg)e.

Lemma 76. In the notation above, we have an equality of vector fields

(Adg ξ)M = ψ∗g−1ξM ,

for ξ ∈ g.

Proof. For p ∈M we can write, using the naturality of exp and the chain rule,23

(Adg ξ)M (p) =
d

dt

∣∣∣∣
t=0

ψexp(tAdg ξ)(p)

=
d

dt

∣∣∣∣
t=0

ψg exp(tξ)g−1(p)

=
d

dt

∣∣∣∣
t=0

ψgψexp(tξ)(ψg−1(p))

= dψg|ψg−1 (p)ξM (ψg−1(p))

= (ψ∗g−1dψ|eξ)(p).
�

Definition 77. An action ψ of G on (M,ω) is weakly Hamiltonian if the vector
field ξM is Hamiltonian for each ξ ∈ g, i.e.

ιξMω = dHξ

for some Hξ ∈ C∞(M). For a weakly Hamiltonian action, then, we obtain a map
g → C∞(M) taking ξ 7→ Hξ. This map is a priori not even linear. However,
since each Hξ is defined only up to a constant, we can choose the Hξ to make
g→ C∞(M) linear.

We say the action ψ of G on (M,ω) is Hamiltonian if the map g→ C∞(M) can
be chosen to be a Lie algebra homomorphism (with respect to the Poisson structure
on C∞(M)).

Definition 78. Suppose ψ is a Hamiltonian action of G on (M,ω). We say that a
map µ : M → g∗ is a moment map for the action if

Hξ(p) = 〈µ(p), ξ〉,
where 〈·, ·〉 is the pairing between g∗ and g.

Example 79. Consider the action of S1 on the sphere (with its usual symplectic
structure) that rotates the sphere about its vertical axis. More precisely, using
cylindrical coordinates θ, z away from the poles, the action is given by ψ : S1 ×
S2 → S2 as (ρ, (θ, z)) 7→ (θ + ρ, z). The associated Lie algebra action is then
dψe : u(1) ∼= R→ X (S2, ω) given by ξ 7→ ξ∂/∂θ. In the notation above,

ξM = ξ
∂

∂θ
.

23Review this.
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Now, since ω = dθ ∧ dz away from the poles, we find that ιξMω = ξdz. Hence the
action is Hamiltonian (the Poisson condition is trivial as u(1) is one-dimensional)
since

Hξ = ξz.

We obtain a moment map µ : S2 → u(1)∗ ∼= R given simply by

µ(θ, z) = z.

This is simply the height function on the sphere, whose fibers are precisely the
orbits of the S1 action.

Definition 80. Suppose (M,ω = −dλ) be an exact symplectic manifold. We say
that the action ψ of G on M is exact if ψ∗gλ = λ for each g ∈ G.

Remark 81. Recall that a closed symplectic 2n-manifold (M,ω) cannot be exact.
Indeed, if it were, the volume form ωn would be exact and Stokes’ theorem would
imply that

∫
M
ωn = 0, which is not possible. Hence for M closed, ω must represent

a nontrivial class in H2(M ;R).

Proposition 82. Let (M,ω = −dλ) be an exact symplectic manifold. Then every
exact action of G on M is Hamiltonian with

Hξ = ιXξλ

for ξ ∈ g.

6.3. Cohomological obstructions. In general, weakly Hamiltonian actions need
not be Hamiltonian. In this section, we digress briefly to derive sufficient conditions
for an action to be weakly Hamiltonian, and a necessary condition for a weakly
Hamiltonian action to be Hamiltonian. For this, we quickly present Lie algebra
cohomology, following Ortega/Ratiu.24

Let G be a real Lie group of dimension n. Similarly to the case of vector fields,
we say that a differential k-form ω ∈ Ωk(G) is left invariant if L∗gω = ω for each

g ∈ G. Note that left invariant k-forms can be identified with the k-forms Λkg∗,
since they are determined by their action at the identity. We now obtain a chain
complex of left-invariant forms

0 Λ0g∗ ∼= R Λ1g ∼= g∗ · · · Λng∗ ∼= R 0,

where the differentials are given by the expected formula: for ω ∈ Λkg∗,

dω(ξ0, . . . , ξk) =
∑

06i<j6k

(−1)i+jω([ξi, ξj ], ξ0, . . . , ξ̂i, . . . , ξ̂j , . . . , ξk).

We note the following low-dimensional cases, which will be the ones of interest to
us. For ω ∈ Λ0g∗, clearly dω = 0. For ω ∈ Λ1g∗ ∼= g∗,

dω(ξ1, ξ2) = −ω[ξ1, ξ2]

and for ω ∈ Λ2g∗,

dω(ξ1, ξ2, ξ3) = −ω([ξ1, ξ2], ξ3) + ω([ξ3, ξ1], ξ2) + ω([ξ2, ξ3], ξ1).

We now define the Lie algebra cohomology H•(g,R) to be the cohomology of
the above complex.

24add citation!
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Remark 83. More generally, let g be a Lie algebra over k and let M be a g-
module. Denote by −g : g-Mod → g-Mod the invariants functor. Then one
defines H•(g,M), the cohomology groups of g with coefficients in M , as the right
derived functors R•(−g)(M). Of course, this is much more generality than we
will need; the formulation above is computing the cohomology of the Chevalley-
Eilenberg resolution of R.25

The first cohomology group is quite easily computed. Indeed,

H1(g,R) = {ω ∈ g∗ | ω[ξ1, ξ2] = 0}.
Noting that ω ∈ g∗ is a map ω : g → R annihilating precisely [g, g], and that such
maps are in correspondence with maps g/[g, g]→ R, we conclude that

H1(g,R) ∼= (g/[g, g])∗.

In particular, we note that if g is semisimple, H1(g,R) = 0. We now relate these
cohomology groups back to Hamiltonian actions.

Proposition 84. The commutator of two symplectic vector fields on (M,ω) is
Hamiltonian.

Proof. Let X,Y ∈ X (M,ω), i.e. dιXω = dιY ω = 0 or equivalently LXω = LY ω =
0. Now, using both of Cartan’s magic formulas, we find that

ι[X,Y ]ω = [LX , ιY ]ω

= LXιY ω
= dιXιY ω.

We conclude that [X,Y ] is Hamiltonian with H[X,Y ] = ω(X,Y ). �

Corollary 85. Suppose G acts on (M,ω) through symplectomorphisms and that
H1(g,R) = 0 or H1

dR(M,R) = 0. Then the action is weakly Hamiltonian.

Proof. If the first Lie algebra cohomology vanishes, we must have that g = [g, g].
In particular, the induced symplectic vector fields on M must be Hamiltonian by
the previous proposition. If the first de Rham cohomology vanishes, every closed
one-form on M is exact and thus, by definition, every symplectic vector field is
Hamiltonian. �

Less trivial are the obstructions for a weakly Hamiltonian action to be Hamil-
tonian.

Proposition 86. Suppose the action of G on (M,ω) is weakly Hamiltonian, where
M is connected. Then the action determines a cocycle [τ ] ∈ H2(g,R) which vanishes
if and only if the action is Hamiltonian.

Proof. Since the action is weakly Hamiltonian we may choose a linear map g →
C∞(M) sending ξ 7→ Hξ such that ιξMω = dHξ. For each pair ξ, η ∈ g, define a
function on M

τ(ξ, η) = {Hξ, Hη} −H[ξ,η].

Since

XH[ξ,η]
= [ξ, η]M = [ξM , ηM ] = [XHξ , XHη ] = X{Hξ,Hη},

25Cite Weibel
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we find that
d
(
H[ξ,η] − {Hξ, Hη}

)
= 0

so τ is locally constant, hence constant. Clearly then τ ∈ Λ2g∗.
We now claim that dτ = 0, i.e.

τ([ξ, η], ζ) + τ([η, ζ], ξ) + τ([ζ, ξ], η) = 0.

Reasoning as in the previous paragraph, we find that

{H[ξ,η], Hζ} = {{Hξ, Hη}, Hζ},
so by the Jacobi identity for the Poisson bracket,

dτ(ξ, η, ζ) = −
(
H[[ξ,η],ζ] +H[[η,ζ],ξ] +H[[ζ,ξ],η]

)
= 0,

by linearity of the map ξ 7→ Hξ and the Jacobi identity for g.

Hence τ represents a cocycle [τ ] ∈ H2(g,R). If the action is Hamiltonian to begin
with, obviously τ = 0, since ξ 7→ Hξ is a Lie algebra homomorphism. Conversely,
suppose [τ ] = 0. This is equivalent to asking that τ be a coboundary

τ(ξ, η) = σ[ξ, η]

for some σ ∈ g∗. Modifying the given map ξ 7→ Hξ to ξ 7→ Hξ + σ(ξ), we find that

[ξ, η] 7→ H[ξ,η] + σ[ξ, η] = {Hξ, Hη},
and we conclude that the action is Hamiltonian. �

Example 87. The second Whitehead lemma states that for g semisimple, H2(g,R) =
0.26 Thus, if the Lie algebra of G is semisimple, every weakly Hamiltonian G-action
on (M,ω) is Hamiltonian.

26Reference Weibel
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7. Week 7 and winter break

The following section is essentially a rewrite of the previous section in order to
clear things up in my head.27

7.1. Group actions on symplectic manifolds.

Definition 88. Suppose G acts on (M,ω) through symplectomorphisms. The G-
action induces a g-action on (M,ω), i.e. a symplectic vector field ξM ∈ Γ(TM,ω)
associated to each ξ ∈ g. We say that the action is weakly Hamiltonian if there
exists a linear comoment map κ : g→ C∞(M) such that

ιξMω = dκ(ξ)

for all ξ ∈ g. Furthermore, we say that the action is Hamiltonian if κ is a Lie
algebra homomorphism with respect to the Poisson structure on M , i.e.

κ([ξ, η]) = {κ(ξ), κ(η)}.

Remark 89. Recall that a symplectic vector field ξM on (M,ω) satisfies

LξMω = dιξMω = 0.

Note that since every closed form is locally exact, every G-action through symplec-
tomorphisms is locally weakly Hamiltonian.

Example 90. Consider S2 with its usual symplectic structure written in cylindrical
coordinates (away from the poles) as

ω = dθ ∧ dz.

Let S1 act on the sphere by rotating it about its vertical axis. More precisely, the
action is given by

ψ : S1 × S2 → S2

(t, θ, z) 7→ (θ + t, z).

It is easy to see that S1 acts through symplectomorphisms. The associated Lie
algebra action is then

dψe : u(1) ∼= R→ Γ(TS2, ω)

ξ 7→ ξS2 = ξ
∂

∂θ
.

We find that

ιξS2ω = ξdz.

Since u(1) is an abelian Lie algebra and {z, z} = 0, we conclude that the action is
Hamiltonian with comoment map κ : R→ C∞(S2) given

κ(ξ) = ξz.

Example 91. Consider T ∗S1 with its usual symplectic structure written in local
cylindrical coordinates as

ω = dθ ∧ dz.

27Add pictures.



34 NILAY KUMAR

Consider the action of R on T ∗S1 = S1 × R that translates the fiber direction:

ψ : R× S1 × R→ S1 × R
(t, θ, z) 7→ (θ, z + t).

It is easy to see that R acts through symplectomorphisms. The associated Lie
algebra action is

dψe : LieR ∼= R→ Γ(TT ∗S1, ω)

ξ 7→ ξT∗S1 = ξ
∂

∂z
.

We find that

ιξT∗S1ω = −ξdθ.

Now, since the one-form dθ is not exact on T ∗S1, we conclude that the action is
not even weakly Hamiltonian. Of course, if U ⊂ S1 is any proper open subset, then
dθ is indeed exact on T ∗U , as alluded to in Remark 89.

Proposition 92. Consider an exact symplectic manifold (M,ω = −dλ) and let G
act on M through symplectomorphisms. Suppose ψ∗gλ = λ for every g ∈ G, i.e. the
G-action is exact. Then the G-action is Hamiltonian with a comoment map

κ(ξ) = ιξMλ.

Proof. We first verify that the action is weakly Hamiltonian, i.e. ιξMω = dκ(ξ):

d (ιξmλ) = LξMλ− ιξMdλ

=
d

dt

∣∣∣∣
t=0

ψ∗exp(tξ)λ+ ιξMω

=
d

dt

∣∣∣∣
t=0

λ+ ιξMω

= ιξMω.

To see that it is in fact Hamiltonian, we check that κ is a Lie algebra homomorphism:

{κ(ξ), κ(η)} = {ιξMλ, ιηMλ}
= dλ(ηM , ξM )

= ηMλ(ξM )− ξMλ(ηM )− λ[ηM , ξM ]

= ι[ξM ,ηM ]λ = κ([ξM , ηM ]).

�

Lemma 93. Let G act through diffeomorphisms ψg on a manifold X. Then the

action lifts to symplectomorphisms ψ̃g : T ∗X → T ∗X by

ψ̃g(αx)(v) = αx(dψgv)

for v ∈ Tψ−1
g xX. In particular, the lifted action is exact with respect to the canonical

one-form on T ∗X.
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Proof. More generally, we show that any diffeomorphism f : X → X lifts to a
diffeomorphism f̃ : T ∗X → T ∗X preserving the canonical one-form on T ∗X. Define

f̃(αx)v = αx(dfv)

for v ∈ Tf−1x. Fix a vector w ∈ TαxT ∗X. Then, invoking the definitions of θ and

f̃ respectively,

(f̃∗θ)αxw = θf̃(αx)(df̃w)

= f̃(αx)(d(π ◦ f̃)w)

= αx(d(f ◦ π ◦ f̃)w)

= αx(dπw)

= θαxw,

as desired. We have used that f ◦ π ◦ f̃ = π : T ∗X → X. �

The cotangent bundle of a manifold is the prototypical exact symplectic manifold,
and hence every exact action on a cotangent bundle yields a Hamiltonian action.
Thus the previous two results generate a large class of Hamiltonian actions on the
cotangent bundle. We will see some examples shortly.

Note that Example 91 – though an action on the cotangent bundle – is not an
example of an exact action, as λ = zdθ is not preserved under z 7→ z + t.

7.2. Cohomological obstructions. In the sequel we will concern ourselves pri-
marily with Hamiltonian actions. It is then natural to ask what the obstructions
are to a G-action by symplectomorphisms being Hamiltonian. In this section we
digress briefly to show that such obstructions are cohomological in nature. For this
we quickly introduce the machinery of Lie algebra cohomology.

Definition 94. Let V be a left g-module, i.e. a real vector space V equipped with
a Lie algebra homomorphism g → EndV . A map of g-modules is a linear map
commuting with the g-action. There is a functor −g : Mod(g) → Mod(R) taking
V to V g = {v ∈ V | ξv = 0, ξ ∈ g}, the invariant submodule. This functor is only
left-exact in general, so if V is a g-module, we define the Lie algebra cohomology
of g with coefficients in V to be

H•(g, V ) ≡ R•(−)g(V )

the associated right derived functors.

In practice, we use the following standard resolution.

Definition 95. The Chevalley-Eilenberg resolution of g with coefficients in a
g-module V is the cochain complex of linear maps (Hom(Λ•g, V ), dCE), where the
differential is given by

dnCEσ(ξ1, . . . , ξn+1) =
∑
i

(−1)i+1ξi · σ(ξ1, . . . , ξ̂i, . . . , ξn)

+
∑
i<j

(−1)i+jσ([ξi, ξj ], ξ1, . . . , ξ̂i, . . . , ξ̂j , . . . , ξn),
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for σ ∈ Hom(Λng, V ).28 Note that, by convention, we take Λ0g to be the trivial
g-module R and d0CE = 0.

We will use the following result in the sequel without further mention.

Theorem 96. The Chevalley-Eilenberg resolution of g with coefficients in a g-
module V computes the Lie algebra cohomology H•(g, V ) of g.

Proof. See, for instance, Weibel’s book. �

Remark 97. The Chevalley-Eilenberg resolution of g is closely tied to the de Rham
cohomology of any compact connected Lie group G with the given Lie algebra, as we
now sketch in some detail. For simplicity, we fix our coefficients to be the the trivial
g-module R. Recall that the de Rham complex on G is (Ω•(G), ddR), the cochain
complex of differential forms on G together with the usual exterior derivative. On
the other hand, one can consider the subcomplex of left-invariant differential forms
(Ω•G(G), ddR). Identifying the space of left-invariant vector fields on G with the
Lie algebra g as usual, we find by dualizing that Ω•G

∼= Hom(Λ•g,R). Under this
identification, the exterior derivative becomes dCE by virtue of our definition above,
so we conclude that the Chevalley-Eilenberg complex of g is naturally identified with
the subcomplex of left-invariant differential forms on G.

Now we claim that the inclusion ι

0 Ω•G(G) Ω•(G)ι

is a quasi-isomorphism, i.e. Ω•G(G) computes the de Rham cohomology of G. We
construct the quasi-inverse explicitly using the existence of the left-invariant Haar
measure on G: if α ∈ Ωk(G), the average

αL =

∫
G

L∗gα dg

is now left-invariant. Since d commutes with pullbacks and the integral over g ∈ G,
we find that −L : Ω•(G) → Ω•G(G) is a map of cochain complexes. Clearly the
composition −L ◦ ι yields the identity on Ω•G(G). It remains to show that ι ◦ −L

is cochain-homotopic to the identity on Ω•(G), i.e. there exists a linear map h :
Ωk(G)→ Ωk−1(G) such that

α− ι(αL) = ddRh+ hddR

for α ∈ Ωk(G).
The construction of h is somewhat involved.29

This argument can be generalized by replacing R with an arbitrary g-module
and G by any G-homogeneous space.

The first result characterizes when an action is weakly Hamiltonian.

Proposition 98. Let G act on (M,ω) through symplectomorphisms. Then we have
a linear map H1(g,R)∗ ∼= g/[g, g]→ H1

dR(M,R) taking [ξ] 7→ [ιξMω]. The action of
G is weakly Hamiltonian if and only if this map is identically zero.

28That this is a complex relies nontrivially on the Jacobi identity and the fact that V is a

g-module.
29Work through the argument via integration over fibers of G×G→ G.
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By the remark above, H1
dR(M,R) ∼= H1(g;R) if G is compact and connected. In

general, the left hand side is the Lie algebra homology of g, because H1(g,R) ∼=
(g/[g, g])∗, as is checked by an explicit computation.

Proof. To show that the map is well-defined, it suffices to show that the commu-
tator of two symplectic vector fields is Hamiltonian (as elements of [g, g] are linear
combinations of commutators):

ι[ξM ,ηM ]ω = (LξM − ιηMLξM )ω = LξM ιηMω = dιξM ιηMω.

Here we have used both of Cartan’s magic formulae. Now, by definition, the action
is weakly Hamiltonian if and only if ιξMω is exact for all ξ. �

In what follows, we will focus on Hamiltonian actions over those that are only
weakly Hamiltonian. The next two propositions, together with Whitehead’s lemmas
stated below show that in many cases of practical interest, where g is semisimple,
actions through symplectomorphisms are automatically Hamiltonian, with unique
comoment map.

Proposition 99. Let (M,ω) be connected and equipped with a weakly Hamiltonian
G-action. Then the action determines a cocycle [τ ] ∈ H2(g,R) which vanishes if
and only if the G-action is Hamiltonian.

Proof. Let κ : g → C∞(M) be the comoment map for the action such that ιξM =
dκ(ξ) for all ξ ∈ g. For each pair ξ, η ∈ g the function τξ,η ∈ C∞(M) given by

τξ,η(p) = {κ(ξ), κ(η)}(p)− κ([ξ, η])(p)

measures the failure of the comoment map to be a Lie algebra homomorphism.
This function is locally constant and hence constant, since

dτξ,η = ιX{κ(ξ),κ(η)}ω − ι[ξ,η]Mω
= ι[Xκ(ξ),Xκ(η)]ω − ι[ξM ,ηM ]ω

= 0,

where Xf represents the Hamiltonian vector field of f , i.e. the uniquely deter-
mined vector field satisfying ιXfω = df . As such, we may view τ as an element of

Hom(Λ2g,R).
We now claim that dCEτ = 0, or:

τ([ξ, η], ζ) + τ([η, ζ], ξ) + τ([ζ, ξ], η) = 0,

for ξ, η, ζ ∈ g. This is immediate in view of

{{κ(ξ), κ(η)}, κ(ζ)} = ιX{κ(ξ),κ(η)}ιXκ(ζ)ω = ι[Xκ(ξ),Xκ(η)]ιXκ(ζ)ω

= ι[ξM ,ηM ]ιζMω = {κ([ξ, η]), κ(ζ)}

because

τ([ξ, η], ζ) + τ([η, ζ], ξ) + τ([ζ, ξ], η) = {{κ(ξ), κ(η)}, κ(ζ)} − κ([[ξ, η], ζ])

+ {{κ(η), κ(ζ)}, κ(ξ)} − κ([[η, ζ], ξ])

+ {{κ(ζ), κ(ξ)}, κ(η)} − κ([[ζ, ξ], η]),

which is zero by the Jacobi identity for {−,−} and [−,−] (and linearity of κ).
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Hence τ represents a cocycle [τ ] ∈ H2(g,R). If the action is Hamiltonian to begin
with, obviously τ = 0, since κ is a Lie algebra homomorphism by construction.
Conversely, suppose [τ ] = 0. This is equivalent to asking that τ be a coboundary

τ(ξ, η) = σ[ξ, η]

for some σ ∈ Hom(g,R) = g∗. Now define κ̃ : g→ C∞(M) as

κ̃ = κ+ σ

and note that

κ̃[ξ, η] = κ[ξ, η] + σ[ξ, η] = κ[ξ, η] + {κ(ξ), κ(η)} − κ[ξ, η]

= {κ(ξ), κ(η)}.
We conclude that the action is Hamiltonian with comoment map κ̃. �

In the Hamiltonian case, moroever, comoment maps are unique up to first coho-
mology.

Proposition 100. Let (M,ω) be connected and equipped with a weakly Hamil-
tonian G-action. Comoment maps for the action are unique up to cocycles in
[c] ∈ H1(g,R) ∼= (g/[g, g])∗. In particular, if H1(g,R) = 0, there is a unique como-
ment map for a Hamiltonian action of G.

Proof. Let κ1, κ2 : g → C∞(M) be two comoment maps for the action of G. By
definition, dκi(ξ) = ιξMω for ξ ∈ g, so d(κ1(ξ) − κ2(ξ)) = 0. Therefore c(ξ) ≡
κ1(ξ) − κ2(ξ) ∈ C∞(M) is constant and we obtain a linear map c : g → R in
g∗ ∼= Hom(Λ1g,R). It remains to show that dCEc = 0. For this we use the fact that
κ is a Lie algebra homomorphism: for ξ, η ∈ g,

(dCEc)(ξ, η) = c[ξ, η] = κ1[ξ, η]− κ2[ξ, η]

= {κ1(ξ), κ1(η)} − {κ2(ξ), κ2(η)}
= ω(ξM , ηM )− ω(ξM , ηM ) = 0,

as desired. �

Theorem 101 (Whitehead’s lemmas). Let g be a semisimple Lie algebra over a
field of characteristic zero. If V is any finite-dimensional g-module then H1(g, V ) =
H2(g, V ) = 0.

Proof. See, for instance, Weibel’s book. �

Corollary 102. Suppose G acts on a connected symplectic manifold (M,ω) through
symplectomorphisms. If g is semisimple then the action is Hamiltonian with a
unique comoment map.

7.3. Moment maps. The moment map repackages the data of the comoment map
as follows.

Definition 103. Suppose (M,ω) has a weakly Hamiltonian G-action with como-
ment map κ : g → C∞(M). Then we say that a map µ : M → g∗ is a moment
map for the action if for p ∈M

κ(ξ)(p) = 〈µ(p), ξ〉,
where 〈·, ·〉 is the evaluation pairing between g∗ and g. If the action is in fact
Hamiltonian, the uniqueness of comoment maps (Proposition 100 above) implies
uniqueness of moment maps.
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Theorem 104 (Noether, Souriau, Smale). Let µ : M → g∗ be a moment map for
a weakly Hamiltonian G-action on (M,ω) with comoment map κ : g → C∞(M).
Then µ is constant along the flow of the Hamiltonian vector field associated to any
G-invariant function H ∈ C∞(M)G.30

Thus, from the perspective of physical systems, the moment map carries the data
of the comoment map, but now as a sort of generalized Hamiltonian that respects
the symmetries of the system.

Proof. Since H ∈ C∞(M)G, we have

H = ψ∗exp(tξ)H

for each ξ ∈ g. Differentiating this identity at t = 0, we find that

0 =
d

dt

∣∣∣∣
t=0

ψ∗exp(tξ)H

= LξMH = dH(ξM )

= ω(XH , ξM ) = {H,κ(ξ)}
= XHκ(ξ),

and hence the function κ(ξ) is constant along the Hamiltonian flow ofH for all ξ ∈ g.
Now since κ(ξ) = 〈µ, ξ〉, we find that µ must be constant along the Hamiltonian
flow of H. �

Example 105 (Linear momentum). Consider the phase space (T ∗R3, ω) of a 1-
particle system in R3. The N -particle case is a straightforward but index-heavy
extension. Translation provides an action of (R3,+) on R3 as q 7→ q+ v for v ∈ R3.
An easy computation reveals that this lifts (in the sense of Lemma 93) to an action
ψ of R3 on T ∗R3 as ψv : (q, p) 7→ (q + v, p). This action is exact by Lemma 93
and hence Hamiltonian by Proposition 92. The associated Lie algebra action by
LieR3 ∼= R3 is

ξ 7→ ξT∗R3 = ξi
∂

∂qi
.

Then

ιξT∗R3ω =

(∑
k

dqk ∧ dpk
)
ξT∗R3 =

∑
i

ξidpi

and we obtain a comoment map κ : LieR3 ∼= R3 → C∞(T ∗R3) given by

κ(ξ) =
∑
i

ξipi.

The moment map µ : T ∗R3 → (R3)∗ is therefore given by∑
i

ξipi = 〈µ(q, p), ξ〉.

Identifying (R3)∗ with R3 via the standard Euclidean metric, we have that

µ(q, p) = p,

the linear momentum of the particle.

30Find references in O-R for N,S,S.
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Example 106 (Angular momentum). Consider again the phase space (T ∗R3, ω)
of a 1-particle system in R3. Rotation provides an action of SO(3,R) on R3 by
matrix multiplication q 7→ Aijq

j for A ∈ SO(3,R). An easy computation reveals
that this lifts (in the sense of Lemma 93) to an action ψ of SO(3,R) on T ∗R3

as ψA : (q, p) 7→ (Aijq
j , Aijpj). This action is exact by Lemma 93 and hence

Hamiltonian by Proposition 92. Recall that the Lie algebra so(3,R) is the space of
3×3 antisymmetric matrices, with the commutator as the Lie bracket. Computing
the infinitesimal action, we find

d

dt

∣∣∣∣
t=0

ψexp(tξ)(q, p) =
d

dt

∣∣∣∣
t=0

(
q + tξijq

j + · · · , p+ tξijpj + · · ·
)

=
∑
i,j

ξijq
j ∂

∂qi
+
∑
i,j

ξijpj
∂

∂pi

for ξ ∈ so(3,R). Therefore the associated Lie algebra action of so(3,R) by vector
fields is given by

ξ 7→ ξT∗R3 |(q,p) =
∑
i,j

ξijq
j ∂

∂qi
+
∑
i,j

ξijpj
∂

∂pi

Now we find that

(ιξT∗R3ω)(q,p) =

(∑
k

dqk ∧ dpk
)
ξT∗R3 =

∑
i,j

ξij(q
jdpi − pjdqi)

=
∑
i,j

ξij(q
jdpi + pidq

j) = d

∑
i,j

piξijq
j

 ,

by antisymmetry of ξij . Hence we obtain a comoment map κ : so(3,R)→ C∞(T ∗R3)
for the action given by

κ(ξ)(q, p) =
∑
i,j

piξijq
j .

The moment map µ : T ∗R3 → so(3,R)∗ is therefore determined by∑
i,j

piξijq
j = 〈µ(q, p), ξ〉.

Identifying so(3,R)∗ with so(3,R) via the standard Euclidean metric on R9 which
yields an isomorphism (R9)∗ ∼= R9, we conclude that

µ(q, p) =

 0 q2p1 − q1p2 q3p1 − q1p3
q1p2 − q2p1 0 q3p2 − q2p3
q1p3 − q3p1 q2p3 − q3p2 0

 .

Moreover, using the Lie algebra isomorphism so(3,R) ∼= (R3,×), we can write

µ(q, p) = q × p,

the usual notation for angular momentum.

Example 107 (Lifted actions).

We now turn to the equivariance properties of moment maps. Recall the following
basic definitions from representation theory.
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Definition 108. Let G be a real group and g be its Lie algebra. Conjugation c :
G→ Diff(G) given by cg(h) = ghg−1 yields a number of interesting representations
of G and g.

Differentiating the conjugation action at the identity, we obtain Adg ≡ (dcg)e :
g → g, which is a Lie algebra endomorphism because cg is a Lie group homomor-
phism. We obtain the Adjoint representation (g,Ad) of G where Ad : G→ End g
is given by g 7→ Adg. Dually, there is the Coadjoint representation (g∗,Ad∗) given
by

〈Ad∗g σ, ξ〉 = 〈σ,Adg−1 ξ〉.
Differentiating in turn the Adjoint action at the identity, we obtain the adjoint

representation (g, ad) of g, where ad : g → End g is a Lie algebra homomorphism.
One can check that

adξ(η) = [ξ, η].

Dually, there is the coadjoint representation (g∗, ad∗) given by

〈ad∗ξ σ, η〉 = 〈σ,− adξ η〉 = 〈σ, [η, ξ]〉.

Definition 109. Suppose (M,ω) has a weakly Hamiltonian G-action with moment
map µ : M → g∗. We say that µ is g-equivariant if

dµp(ξM ) = − ad∗ξ(µ(p)).

for all ξ ∈ g and p ∈M . Similarly, we say that µ is G-equivariant if

(ψ∗gµ)(p) = Ad∗g−1(µ(p)).

for g ∈ G and p ∈M .

The following result demonstrates the equivariant nature of moment maps for
Hamiltonian actions.

Proposition 110. Suppose (M,ω) has a weakly Hamiltonian G-action with como-
ment map κ and moment map µ. Then the action is Hamiltonian if and only if µ
is g-equivariant. Moreover, if G is connected, µ is G-equivariant if and only if it is
g-equivariant.

Proof. Recall that the action is Hamiltonian if and only if the comoment map is a
Lie algebra homomorphism, i.e.

{κ(ξ), κ(η)} = κ[ξ, η].

By definition, the right-hand side can be written

κ[ξ, η](p) = 〈µ(p), [ξ, η]〉
= −〈ad∗η(µ(p)), ξ〉.

On the other hand, differentiating the definition of the moment map yields

dκ(ξ)pv = 〈dµpv, ξ〉

for v ∈ TpM , since 〈−, ξ〉 : g∗ → R is linear and hence its own derivative. Now the
left-hand side of the Hamiltonian condition becomes

{κ(ξ), κ(η)}(p) = dκ(ξ)pηM |p = 〈dµpηM |p, ξ〉,

we conclude that the action is Hamiltonian if and only if the moment map is g-
equivariant.
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That G-equivariance implies g-equivariance (regardless of whether G is con-
nected) follows by differentiation. Now supposeG is connected and µ is g-equivariant,
i.e. the G-action is Hamiltonian. It suffices to show that the comoment map is G-
equivariant,

κ(Adg−1 ξ) = ψ∗gκ(ξ),

because then, by the usual dualization procedure,

〈(ψ∗gµ)(p), ξ〉 = (ψ∗gκ(ξ))(p)

= κ(Adg−1 ξ)(p)

= 〈µ(p),Adg−1 ξ〉
= 〈Ad∗g−1(µ(p)), ξ〉,

which establishes G-equivariance of µ.31 �

Example 111 (Coadjoint orbits). Recall the Poisson structure on g∗, show that
coadjoint orbits have symplectic structure, and compute the moment map. Maybe
look at some connections to representation theory?

Let g be a real Lie algebra. The dual g∗ is naturally a Poisson manifold as we
now describe. For any f ∈ C∞(g), the differential dfσ at σ ∈ g∗ is a linear map
dfσ : Tσg

∗ ∼= g∗ → R which can be identified canonically as an element of g. With
this understood, we define the Lie-Poisson bracket on g∗ to be

{f, g}(σ) = −σ[dfσ, dgσ].

Note that this bracket reduces to the original Lie bracket on linear functions g ↪→
C∞(g∗).

Furthermore, each coadjoint G-orbit O ⊂ g is in fact naturally a symplectic
manifold.

7.4. Symplectic Reduction.

7.5. Applications? Is there anything that Morse theory has to say? We haven’t
made any restrictions on Hamiltonians H. What if H is Morse? See Atiyah-
Guillemin-Sternberg, Duistermaat-Heckmann localization, maybe more.

31Finish this proof.
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