The Batalin-Vilkovisky Laplacian from homological perturbation theory

Nilay Kumar

August 3, 2021

GAUGE ALGEBRA AND QUANTIZATION

I.A. BATALIN

Physical Lebedev Institute, Academy of Sciences, Moscow, USSR

and

G.A. VILKOVISKY State Committe of Standards, Moscow, USSR

Received 3 March 1981

In respectful memory of Professor Berezin

Quantization of a general gauge theory in the lagrangian approach is accomplished in closed form. The generating equation is found, containing all the relations of the open gauge algebra. A new class of diagrams is revealed, required by BRSsymmetry, but completely definable only from the requirement of unitarity.

The BV formalism adds to the gauge theory extra fields: *ghosts* and *antifields*. The action is modified

 $S_{\rm BV}=S_0+\hbar S_1+\hbar^2 S_2+\cdots$

to satisfy the quantum master equation (QME)

$$\frac{1}{2}(S_{\rm BV},S_{\rm BV})-i\hbar\Delta S_{\rm BV}=0.$$

The QME ensures that the BV functional integrals are well-defined, independent of gauge fixing Lagrangian *L*:

$$\int_L i_L^* (e^{iS_{\mathsf{BV}}/\hbar} \sigma).$$

The BV formalism adds to the gauge theory extra fields: *ghosts* and *antifields*. The action is modified

$$S_{\mathsf{BV}} = S_0 + \hbar S_1 + \hbar^2 S_2 + \cdots$$

to satisfy the quantum master equation (QME)

$$\frac{1}{2}(S_{\rm BV},S_{\rm BV})-i\hbar\Delta S_{\rm BV}=0.$$

The QME ensures that the BV functional integrals are well-defined, independent of gauge fixing Lagrangian *L*:

$$\int_L i_L^* (e^{iS_{\mathsf{BV}}/\hbar} \sigma).$$

The BV formalism adds to the gauge theory extra fields: *ghosts* and *antifields*. The action is modified

$$S_{\mathsf{BV}} = S_0 + \hbar S_1 + \hbar^2 S_2 + \cdots$$

to satisfy the quantum master equation (QME)

$$\frac{1}{2}(S_{\rm BV},S_{\rm BV})-i\hbar\Delta S_{\rm BV}=0.$$

The QME ensures that the BV functional integrals are well-defined, independent of gauge fixing Lagrangian *L*:

$$\int_L i_L^* (e^{iS_{\mathsf{BV}}/\hbar} \sigma).$$

The BV formalism adds to the gauge theory extra fields: *ghosts* and *antifields*. The action is modified

$$S_{\mathsf{BV}} = S_0 + \hbar S_1 + \hbar^2 S_2 + \cdots$$

to satisfy the quantum master equation (QME)

$$\frac{1}{2}(S_{\rm BV},S_{\rm BV})-i\hbar\Delta S_{\rm BV}=0.$$

The QME ensures that the BV functional integrals are well-defined, independent of gauge fixing Lagrangian L:

$$\int_{L} i_{L}^{*} (e^{iS_{\rm BV}/\hbar} \sigma).$$

In Darboux coordinates $\{x^i, x_i^+\}_{i=1,...,n}$ on a finite-dimensional odd symplectic supermanifold (M, ω) ,

$$\Delta = \sum_{i=1}^{n} \frac{\partial^2}{\partial x^i \partial x_i^+}, \qquad \Delta^2 = 0.$$

Theorem (Khudaverdian, 2004)

The BV operator $\Delta = \partial^2 / \partial x^i \partial x_i^+$ acts covariantly on the half-densities $\Gamma(M, |\Lambda_M|^{1/2})$ of an odd symplectic supermanifold.

Khudaverdian classifies the canonical transformations of Darboux coordinates on odd symplectic manifolds and manually checks that Δ transforms appropriately.

In Darboux coordinates $\{x^i, x_i^+\}_{i=1,...,n}$ on a finite-dimensional odd symplectic supermanifold (M, ω) ,

$$\Delta = \sum_{i=1}^{n} \frac{\partial^2}{\partial x^i \partial x_i^+}, \qquad \Delta^2 = 0.$$

Theorem (Khudaverdian, 2004)

The BV operator $\Delta = \partial^2 / \partial x^i \partial x_i^+$ acts covariantly on the half-densities $\Gamma(M, |\Lambda_M|^{1/2})$ of an odd symplectic supermanifold.

Khudaverdian classifies the canonical transformations of Darboux coordinates on odd symplectic manifolds and manually checks that Δ transforms appropriately.

Later, Ševera obtained results linking half-densities to differential forms on M. He gave a spectral sequence construction of Δ .

We present a new, independent proof of Khudaverdian's result:

Theorem (K.)

The BV operator arises locally from homological perturbation theory; that is, transferring the perturbation $d = d_{\rm dR}$ of the right-hand side of

yields the BV operator $\hbar\Delta$ on the left. The perturbation setup lifts to Čech complexes, and thus the BV Laplacian globalizes to an operator on the sheaf of half-densities.

Later, Ševera obtained results linking half-densities to differential forms on M. He gave a spectral sequence construction of Δ . We present a new, independent proof of Khudaverdian's result:

Theorem (K.)

The BV operator arises locally from homological perturbation theory; that is, transferring the perturbation $d = d_{\rm dR}$ of the right-hand side of

yields the BV operator $\hbar\Delta$ on the left. The perturbation setup lifts to Čech complexes, and thus the BV Laplacian globalizes to an operator on the sheaf of half-densities.

We work with graded supermanifolds, where coordinates have:

▶ an internal parity $p(\phi^i) \in \mathbb{Z}/2\mathbb{Z}$

▶ an integer grading $gh(\phi^i) \in \mathbb{Z}$ known as the *ghost number* The Koszul signs are determined by the total parity

$$|\phi^i| = \mathsf{p}(\phi^i) + \mathsf{gh}(\phi^i).$$

Odd symplectic geometry

A (-1)-shifted odd symplectic form ω on M is a closed two-form providing an isomorphism

$$\omega: TM o T^*[-1]M$$

 $v \mapsto \omega(v, -)$

Note: $\omega(v, w) = 0$ unless gh(v) + gh(w) = -1.

By Darboux's theorem, we can choose coordinates $(x^1, \ldots, x^n, x_1^+, \ldots, x_n^+)$ such that

$$\omega = dx_i^+ \wedge dx^i,$$

where $|x^i| = 0$. We will moreover ask that the body of M is oriented and that the x^i provide an oriented chart for M.

Odd symplectic geometry

A (-1)-shifted odd symplectic form ω on M is a closed two-form providing an isomorphism

$$\omega: TM o T^*[-1]M$$

 $v \mapsto \omega(v, -)$

Note: $\omega(v, w) = 0$ unless gh(v) + gh(w) = -1. By Darboux's theorem, we can choose coordinates $(x^1, \ldots, x^n, x_1^+, \ldots, x_n^+)$ such that

$$\omega = dx_i^+ \wedge dx^i,$$

where $|x^i| = 0$. We will moreover ask that the body of M is oriented and that the x^i provide an oriented chart for M.

Ševera's extra differential

The symplectic form ω is odd in the de Rham complex:

$$\mathsf{gh}(\omega) = -1, \mathsf{p}(\omega) = 0, \mathsf{deg}_{\mathrm{dR}}(\omega) = 2 \implies |\omega| = 1$$

and hence squares to zero:

$$\omega^2 = 0.$$

Ševera observed that multiplication by $\omega_{
m s}$

 $\Omega = \hbar^{-1}\omega \wedge -$

provides an extra differential on the de Rham complex:

 $\Omega^2 = 0, \qquad [\Omega, d_{\mathrm{dR}}] = 0.$

Ševera's extra differential

The symplectic form ω is odd in the de Rham complex:

$$\mathsf{gh}(\omega) = -1, \mathsf{p}(\omega) = 0, \mathsf{deg}_{\mathrm{dR}}(\omega) = 2 \implies |\omega| = 1$$

and hence squares to zero:

$$\omega^2 = 0$$

Ševera observed that multiplication by ω ,

$$\Omega = \hbar^{-1}\omega \wedge -$$

provides an extra differential on the de Rham complex:

$$\Omega^2 = 0, \qquad [\Omega, d_{\mathrm{dR}}] = 0.$$

Half-densities

Proposition (Ševera, 2006)

Let (M, ω) be an odd symplectic supermanifold such that the body of M is oriented. Then there is an isomorphism of \mathcal{O}_M^{\hbar} -modules

$$\psi: H^*(\mathrm{dR}^{\hbar}_M, \Omega) \to |\Lambda^{\hbar}_M|^{1/2},$$

such that, on a Darboux chart U,

$$\psi_U(f[dx^1\cdots dx^n])=f|\mathcal{D}(x,x^+)|^{1/2}.$$

The proof proceeds in two steps:

- 1. local cohomology computation
- 2. analysis of the transformation properties

Half-densities

Proposition (Ševera, 2006)

Let (M, ω) be an odd symplectic supermanifold such that the body of M is oriented. Then there is an isomorphism of \mathcal{O}_M^{\hbar} -modules

$$\psi: H^*(\mathrm{dR}^{\hbar}_M, \Omega) \to |\Lambda^{\hbar}_M|^{1/2},$$

such that, on a Darboux chart U,

$$\psi_U(f[dx^1\cdots dx^n])=f|\mathcal{D}(x,x^+)|^{1/2}.$$

The proof proceeds in two steps:

- 1. local cohomology computation
- 2. analysis of the transformation properties

Define, on $\mathrm{dR}^{\hbar}_{M}(U)$,

$$\Lambda = \hbar \iota(\partial_{x^i})\iota(\partial_{x^+_i})$$

Notice that

$$gh(\Lambda)=1, p(\Lambda)=0, deg_{\mathrm{dR}}(\Lambda)=-2 \implies |\Lambda|=1.$$

Lemma (Ševera)

The commutator $[\Omega, \Lambda]$ is a semisimple operator on $dR^{\hbar}_{M}(U)$. For a monomial $\alpha \in dR^{\hbar}_{M}(U)$,

$$[\Omega, \Lambda] \alpha = (n - \deg_{d_X} \alpha + \deg_{d_X^+} \alpha) \alpha.$$

Define, on $\mathrm{dR}^{\hbar}_{M}(U)$,

$$\Lambda = \hbar \iota(\partial_{x^i})\iota(\partial_{x^+_i})$$

Notice that

$$\mathsf{gh}(\Lambda) = 1, \mathsf{p}(\Lambda) = 0, \mathsf{deg}_{\mathrm{dR}}(\Lambda) = -2 \implies |\Lambda| = 1.$$

Lemma (Ševera)

The commutator $[\Omega, \Lambda]$ is a semisimple operator on $dR^{\hbar}_{M}(U)$. For a monomial $\alpha \in dR^{\hbar}_{M}(U)$,

$$[\Omega, \Lambda]\alpha = (n - \deg_{d_X} \alpha + \deg_{d_{X^+}} \alpha)\alpha.$$

Write $dR^{\hbar}_{M}(U)_{m}$ for the subcomplex of forms with eigenvalue m under $[\Omega, \Lambda]$. Then

$$(\mathrm{dR}^{\hbar}_{M}(U),\Omega) = \bigoplus_{m=0}^{\infty} (\mathrm{dR}^{\hbar}_{M}(U)_{m},\Omega).$$

Notice that $n - \deg_{dx} + \deg_{dx^+}$ is bounded below by 0, with

$$(\mathrm{dR}^{\hbar}_{M}(U)_{0},\Omega)=(\mathcal{O}^{\hbar}_{M}(U)\cdot dx^{1}\cdots dx^{n},0).$$

Cohomology of $\boldsymbol{\Omega}$

Lemma

The inclusion

$$i:(\mathrm{dR}^{\hbar}_{\mathcal{M}}(U)_{0},0)\hookrightarrow(\mathrm{dR}^{\hbar}_{\mathcal{M}}(U),\Omega).$$

is a quasi-isomorphism.

We build a homotopy $h : \mathrm{dR}^{\hbar}_M(U) \to \mathrm{dR}^{\hbar}_M(U)$,

$$h\alpha = \begin{cases} 0 & \alpha \in \mathrm{dR}^{\hbar}_{M}(U)_{0} \\ m^{-1}\Lambda\alpha & \alpha \in \mathrm{dR}^{\hbar}_{M}(U)_{m}, m \neq 0. \end{cases}$$

Then, if p is the projection to $\mathrm{dR}^{\hbar}_M(U)_0$,

$$\operatorname{id} - i \circ p = [\Omega, h].$$

Lemma

The inclusion

$$i:(\mathrm{dR}^{\hbar}_{\mathcal{M}}(U)_{0},0)\hookrightarrow(\mathrm{dR}^{\hbar}_{\mathcal{M}}(U),\Omega).$$

is a quasi-isomorphism.

We build a homotopy $h : dR^{\hbar}_{M}(U) \to dR^{\hbar}_{M}(U)$,

$$h\alpha = \begin{cases} 0 & \alpha \in \mathrm{dR}^{\hbar}_{M}(U)_{0} \\ m^{-1}\Lambda\alpha & \alpha \in \mathrm{dR}^{\hbar}_{M}(U)_{m}, m \neq 0. \end{cases}$$

Then, if p is the projection to $\mathrm{dR}^{\hbar}_{\mathcal{M}}(U)_{0}$,

 $\operatorname{id} - i \circ p = [\Omega, h].$

Lemma

The inclusion

$$i:(\mathrm{dR}^{\hbar}_{\mathcal{M}}(U)_{0},0)\hookrightarrow(\mathrm{dR}^{\hbar}_{\mathcal{M}}(U),\Omega).$$

is a quasi-isomorphism.

We build a homotopy $h : dR^{\hbar}_{M}(U) \to dR^{\hbar}_{M}(U)$,

$$hlpha = egin{cases} 0 & lpha \in \mathrm{dR}^{\hbar}_M(U)_0 \ m^{-1}\Lambdalpha & lpha \in \mathrm{dR}^{\hbar}_M(U)_m, m
eq 0. \end{cases}$$

Then, if p is the projection to $dR^{\hbar}_{M}(U)_{0}$,

$$\operatorname{id} - i \circ p = [\Omega, h].$$

Thus the cohomology $H^*(\mathrm{dR}^\hbar_M(U),\Omega)$ is generated, on U, by $dx^1\cdots dx^n$.

In another Darboux coordinate system, $(y^1, \ldots, y^n, y_1^+, \ldots, y_n^+)$, by

$$dy^{i} = dx^{j} \frac{\partial y^{i}}{\partial x^{j}} + dx^{+}_{j} \frac{\partial y^{i}}{\partial x^{+}_{j}},$$

the generator transforms as

$$dy^1 \cdots dy^n = dx^1 \cdots dx^n \det\left(\frac{\partial y^i}{\partial x^j}\right) + \cdots$$

Thus the cohomology $H^*(dR^{\hbar}_M(U), \Omega)$ is generated, on U, by $dx^1 \cdots dx^n$

In another Darboux coordinate system, $(y^1, \ldots, y^n, y_1^+, \ldots, y_n^+)$, by

$$dy^{i} = dx^{j} \frac{\partial y^{i}}{\partial x^{j}} + dx^{+}_{j} \frac{\partial y^{i}}{\partial x^{+}_{j}},$$

the generator transforms as

$$dy^1 \cdots dy^n = dx^1 \cdots dx^n \det \left(\frac{\partial y^i}{\partial x^j}\right) + \cdots$$

The omitted terms in

$$dy^1 \cdots dy^n = dx^1 \cdots dx^n \det \left(\frac{\partial y^i}{\partial x^j}\right) + \cdots$$

involve dx^+ and are Ω -exact. Hence the cohomology classes transform

$$[dy^1 \cdots dy^n] = [dx^1 \cdots dx^n] \left| \det \left(\frac{\partial y^i}{\partial x^j} \right) \right| \tag{1}$$

according to the inverse determinant of the top-left block of

$$T = \begin{pmatrix} \frac{\partial x}{\partial y} & \frac{\partial x}{\partial y^+} \\ \frac{\partial x^+}{\partial y} & \frac{\partial x^+}{\partial y^+} \end{pmatrix}$$

The omitted terms in

$$dy^1 \cdots dy^n = dx^1 \cdots dx^n \det \left(\frac{\partial y^i}{\partial x^j}\right) + \cdots$$

involve dx^+ and are Ω -exact. Hence the cohomology classes transform

$$[dy^1 \cdots dy^n] = [dx^1 \cdots dx^n] \left| \det \left(\frac{\partial y^i}{\partial x^j} \right) \right|$$
(1)

according to the inverse determinant of the top-left block of

$$T = \begin{pmatrix} \frac{\partial x}{\partial y} & \frac{\partial x}{\partial y^+} \\ \frac{\partial x^+}{\partial y} & \frac{\partial x^+}{\partial y^+} \end{pmatrix}$$

Half-densities

Lemma (Khudaverdian-Voronov, 2006)

Let A be a symplectic automorphism of an odd symplectic superspace (V, ω) . Then

 $\mathsf{Ber}(A) = \mathsf{det}(A_{00})^2,$

where A_{00} is the even-even block.

The formula

$$[dy^{1}\cdots dy^{n}] = [dx^{1}\cdots dx^{n}] \cdot |\det(T_{00})|^{-1}$$
(2)

is precisely the transformation rule for *half-densities*. This completes the proof of Ševera's result.

Half-densities

Lemma (Khudaverdian-Voronov, 2006)

Let A be a symplectic automorphism of an odd symplectic superspace (V, ω) . Then

 $\mathsf{Ber}(A) = \mathsf{det}(A_{00})^2,$

where A_{00} is the even-even block.

The formula

$$[dy^{1}\cdots dy^{n}] = [dx^{1}\cdots dx^{n}] \cdot |\det(T_{00})|^{-1}$$
(2)

is precisely the transformation rule for *half-densities*. This completes the proof of Ševera's result.

Strong deformation retractions

In the proof of Ševera's result, we have constructed a diagram

such that

pi = id, $id - ip = [\Omega, h]$.

This data can be systematized in the notion of a strong deformation retraction — this reformulation leads to our construction of Δ .

Strong deformation retractions

Definition

A strong deformation retraction (SDR) of complexes is a diagram

where i and p are maps of complexes and h is a map of degree -1, such that

$$pi = id_C$$
, $id_D - ip = [d_D, h]$,

together with the side conditions

$$hi = 0, \qquad ph = 0, \qquad h^2 = 0.$$

Homological perturbation lemma

Theorem (Homological perturbation lemma)

Let δ be a small perturbation of d_D , that is, the operator $(id_D - \delta h)$ is invertible. Then there exists a perturbed strong deformation retraction

where $A = (id_D - \delta h)^{-1} \delta$.

These formulas were originally discovered by Shih (1962) and Brown (1965) in studying the homology of fiber bundles.

Homological perturbation lemma

Theorem (Homological perturbation lemma)

Let δ be a small perturbation of d_D , that is, the operator $(id_D - \delta h)$ is invertible. Then there exists a perturbed strong deformation retraction

where $A = (id_D - \delta h)^{-1} \delta$.

These formulas were originally discovered by Shih (1962) and Brown (1965) in studying the homology of fiber bundles.

Local construction of Δ

Lemma

The de Rham differential $d=d_{\rm dR}$ is a small perturbation of Ω on the right.

Proof.

The sum

$$(1 - dh)^{-1} = 1 + dh + dhdh + \cdots$$

is finite on any de Rham monomial: $\deg_{\mathrm{dR}} d=1$ but $\deg_{\mathrm{dR}} h=-2.$

Local construction of Δ

Lemma

The de Rham differential $d=d_{\rm dR}$ is a small perturbation of Ω on the right.

Proof.

The sum

$$(1-dh)^{-1}=1+dh+dhdh+\cdots$$

is finite on any de Rham monomial: $\deg_{\mathrm{dR}} d = 1$ but $\deg_{\mathrm{dR}} h = -2$.

Local construction of Δ

Applying the perturbation lemma, we obtain

Theorem (K.)

The transferred differential on $|\Lambda^{\hbar}_{M}|^{1/2}(U)$ is the BV Laplacian

$$pAi = \hbar \Delta = \hbar \frac{\partial^2}{\partial x^i \partial x_i^+}.$$
Local construction of Δ

Applying the perturbation lemma, we obtain

Theorem (K.)

The transferred differential on $|\Lambda^{\hbar}_{M}|^{1/2}(U)$ is the BV Laplacian

$$pAi = \hbar \Delta = \hbar \frac{\partial^2}{\partial x^i \partial x_i^+}.$$

Proof

Let
$$\mu = f |\mathcal{D}(x, x^+)|^{1/2} \in |\Lambda_M^{\hbar}|^{1/2}(U)$$
. Then
 $pAi\mu = p(1 - dh)^{-1}d(fdx^1 \cdots dx^n)$
 $= p(d + dhd + dhdhd + \cdots)fdx^1 \cdots dx^n$

because ρ is non-zero only on forms of de Rham degree *n*. The remaining term is computed:

$$pdhd(fdx^1 \cdots dx^n) = h \frac{\partial^2 f}{\partial x^n \partial x_1^n} [D(x, x^1)]^{1/2}$$

Proof

Let
$$\mu = f |\mathcal{D}(x, x^+)|^{1/2} \in |\Lambda_M^{\hbar}|^{1/2}(U)$$
. Then
 $pAi\mu = p(1 - dh)^{-1}d(fdx^1 \cdots dx^n)$
 $= p(d + dhd + dhdhd + \cdots)fdx^1 \cdots dx^n$
 $= pdhd(fdx^1 \cdots dx^n)$

because p is non-zero only on forms of de Rham degree n. The remaining term is computed:

$$pdhd(fdx^{1}\cdots dx^{n}) = \hbar \frac{\partial^{2}f}{\partial x^{k}\partial x_{k}^{+}} |\mathcal{D}(x,x^{+})|^{1/2}$$

Proof

Let
$$\mu = f |\mathcal{D}(x, x^+)|^{1/2} \in |\Lambda_M^{\hbar}|^{1/2}(U)$$
. Then
 $pAi\mu = p(1 - dh)^{-1}d(fdx^1 \cdots dx^n)$
 $= p(d + dhd + dhdhd + \cdots)fdx^1 \cdots dx^n$
 $= pdhd(fdx^1 \cdots dx^n)$

because p is non-zero only on forms of de Rham degree n. The remaining term is computed:

$$pdhd(fdx^1\cdots dx^n) = \hbar \frac{\partial^2 f}{\partial x^k \partial x^+_k} |\mathcal{D}(x,x^+)|^{1/2}.$$

Intertwining Δ and $\Omega + d$

The map i' intertwines the differentials

 $i'(\hbar\Delta\mu) = (\Omega + d_{\mathrm{dR}})i'\mu.$

Explicitly, if $\mu = f |\mathcal{D}(x, x^+)|^{1/2} \in |\Lambda_M^{\hbar}|^{1/2}(U)$,

$$i'\mu = \sum_{j=0}^n \sum_{k_1 < \dots < k_j} \pm \hbar^j \frac{\partial^j f}{\partial x_{k_j}^+ \cdots \partial x_{k_1}^+} dx^1 \cdots \widehat{dx^{k_1}} \cdots \widehat{dx^{k_j}} \cdots dx^n.$$

Intertwining Δ and $\Omega + d$

The map i' intertwines the differentials

$$i'(\hbar\Delta\mu) = (\Omega + d_{\mathrm{dR}})i'\mu.$$

Explicitly, if $\mu = f |\mathcal{D}(x,x^+)|^{1/2} \in |\Lambda^{\hbar}_M|^{1/2}(U)$,

$$i'\mu = \sum_{j=0}^{n} \sum_{k_1 < \cdots < k_j} \pm \hbar^j \frac{\partial^j f}{\partial x_{k_j}^+ \cdots \partial x_{k_1}^+} dx^1 \cdots \widehat{dx^{k_1}} \cdots \widehat{dx^{k_j}} \cdots dx^n.$$

Globalization

The map $i : |\Lambda^{\hbar}_{\mathcal{M}}|^{1/2}(U) \to \mathrm{dR}^{\hbar}_{\mathcal{M}}(U)$ is coordinate-dependent:

$$dy^1 \cdots dy^n = dx^1 \cdots dx^n \det\left(\frac{\partial y^i}{\partial x^j}\right) + \cdots$$

and so the SDR from before is not an SDR of sheaves.

Our goal is to prove:

Theorem

The local expression $\hbar \partial^2 / \partial x^i \partial x_i^+$ for the BV Laplacian on half-densities globalizes to a differential on $\Gamma(M, |\Lambda_M^h|^{1/2})$.

Globalization

The map $i : |\Lambda^{\hbar}_{\mathcal{M}}|^{1/2}(U) \to \mathrm{dR}^{\hbar}_{\mathcal{M}}(U)$ is coordinate-dependent:

$$dy^1 \cdots dy^n = dx^1 \cdots dx^n \det\left(\frac{\partial y^i}{\partial x^j}\right) + \cdots$$

and so the SDR from before is not an SDR of sheaves. Our goal is to prove:

Theorem

The local expression $\hbar \partial^2 / \partial x^i \partial x_i^+$ for the BV Laplacian on half-densities globalizes to a differential on $\Gamma(M, |\Lambda_M^{\hbar}|^{1/2})$.

Čech complexes

To prove the theorem we upgrade our SDR to a SDR of Čech total complexes:

Here \mathcal{U} is a cover of M by Darboux charts as before, and

$$(\operatorname{Tot}^{k}\check{C}(\mathcal{U},|\Lambda_{M}^{\hbar}|^{1/2}),0) = \prod_{p+q=k} \prod_{i_{0},...,i_{p}} (|\Lambda_{M}^{\hbar}|^{1/2})^{q}(U_{i_{0}\cdots i_{p}}),$$

 $(\operatorname{Tot}^{k}\check{C}(\mathcal{U},\operatorname{dR}_{M}^{\hbar}),\Omega) = \prod_{p+q=k} \prod_{i_{0},...,i_{p}} (\operatorname{dR}_{M}^{\hbar})^{q}(U_{i_{0}\cdots i_{p}}).$

Čech complexes

To prove the theorem we upgrade our SDR to a SDR of Čech total complexes:

The maps *i*, *p*, and *h* are defined on each intersection $U_{i_0\cdots i_j}$ as in the local case, using the coordinates on U_{i_0} .

The map *i* needs to be modified in order to intertwine \check{d}_{Λ} with $\check{d} + \Omega$.

Key idea: treat d as a perturbation of the right-hand side.

Lemma

The Čech differential \check{d} is a small perturbation of Ω ; that is, $(\mathrm{id} - \check{d}h)$ is invertible.

The map *i* needs to be modified in order to intertwine \check{d}_{Λ} with $\check{d} + \Omega$.

Key idea: treat \check{d} as a perturbation of the right-hand side.

Lemma

The Čech differential \check{d} is a small perturbation of Ω ; that is, $(id - \check{d}h)$ is invertible.

The map *i* needs to be modified in order to intertwine \check{d}_{Λ} with $\check{d} + \Omega$.

Key idea: treat \check{d} as a perturbation of the right-hand side.

Lemma

The Čech differential \check{d} is a small perturbation of Ω ; that is, $(id - \check{d}h)$ is invertible.

\check{d} as a perturbation

Applying the homological perturbation lemma yields the SDR:

Proposition

The new differential on the left is the Čech differential:

 $pAi = p(\check{d} + \check{d}h\check{d} + \cdots)i = p\check{d}i = \check{d}_{\Lambda}.$

\check{d} as a perturbation

Applying the homological perturbation lemma yields the SDR:

Proposition

The new differential on the left is the Čech differential:

$$pAi = p(\check{d} + \check{d}h\check{d} + \cdots)i = p\check{d}i = \check{d}_{\Lambda}$$

Back to $d_{\rm dR}$

We now repeat the argument in the local setting.

Perturb the right-hand side by the de Rham differential d_{dR} .

Lemma

The de Rham differential d_{dR} is a small perturbation of $\Omega + \check{d}$; that is, $(id - d_{dR}h') = (id - d_{dR}(h + hAh))$ is invertible.

Back to d_{dR}

We now repeat the argument in the local setting.

Perturb the right-hand side by the de Rham differential d_{dR} .

Lemma

The de Rham differential d_{dR} is a small perturbation of $\Omega + \check{d}$; that is, $(id - d_{dR}h') = (id - d_{dR}(h + hAh))$ is invertible.

Back to d_{dR}

Applying the perturbation lemma again, we obtain

The differential p'A'i'

The perturbation p'A'i' of \check{d}_{Λ} on the left is:

$$p'A'i' = (p + pAh)(1 - dh')^{-1}d(i + hAi)$$

Lemma

The new differential on the left is $\check{d}_{\Lambda} + pdhdi$.

The differential p'A'i'

The perturbation p'A'i' of \check{d}_{Λ} on the left is:

$$p'A'i' = (p + pAh)(1 - dh')^{-1}d(i + hAi)$$

Lemma

The new differential on the left is $\check{d}_{\Lambda} + pdhdi$.

We now have a new differential $\check{d}_{\Lambda} + pdhdi$ on the left:

The differential *pdhdi* has Čech degree zero and commutes with \check{d} : it sends Čech 0-cocycles to Čech 0-cocycles.

Thus *pdhdi* restricts to a well-defined operator on global sections of $|\Lambda_M^{\hbar}|^{1/2}$.

We have already calculated:

$$pdhdi = \hbar \frac{\partial^2}{\partial x^i \partial x_i^+} = \hbar \Delta.$$

Hence we obtain a new proof of Khudaverdian's result:

Theorem (K.)

The differential \check{d}_{Λ} + pdhdi on Tot^{*} $\check{C}(\mathcal{U}, |\Lambda_{M}^{\hbar}|^{1/2})$ restricts to the BV operator $\hbar \partial^{2}/\partial x^{i} \partial x_{i}^{+}$ on the global sections $\Gamma(M, |\Lambda_{M}^{\hbar}|^{1/2})$ of the sheaf of half-densities on an odd symplectic supermanifold.

Thus *pdhdi* restricts to a well-defined operator on global sections of $|\Lambda_M^{\hbar}|^{1/2}$.

We have already calculated:

$$pdhdi = \hbar \frac{\partial^2}{\partial x^i \partial x_i^+} = \hbar \Delta.$$

Hence we obtain a new proof of Khudaverdian's result:

Theorem (K.)

The differential \check{d}_{Λ} + pdhdi on Tot^{*} $\check{C}(\mathcal{U}, |\Lambda_{M}^{\hbar}|^{1/2})$ restricts to the BV operator $\hbar \partial^{2}/\partial x^{i} \partial x_{i}^{+}$ on the global sections $\Gamma(M, |\Lambda_{M}^{\hbar}|^{1/2})$ of the sheaf of half-densities on an odd symplectic supermanifold.

Thus *pdhdi* restricts to a well-defined operator on global sections of $|\Lambda_M^{\hbar}|^{1/2}$.

We have already calculated:

$$pdhdi = \hbar \frac{\partial^2}{\partial x^i \partial x_i^+} = \hbar \Delta.$$

Hence we obtain a new proof of Khudaverdian's result:

Theorem (K.)

The differential \check{d}_{Λ} + pdhdi on Tot^{*} $\check{C}(\mathcal{U}, |\Lambda_{M}^{\hbar}|^{1/2})$ restricts to the BV operator $\hbar \partial^{2}/\partial x^{i} \partial x_{i}^{+}$ on the global sections $\Gamma(M, |\Lambda_{M}^{\hbar}|^{1/2})$ of the sheaf of half-densities on an odd symplectic supermanifold.

More general Lagrangians

Homological perturbation theory gives us explicit formulas for working with half-densities and Δ as differential forms.

Our maps write half-densities locally as

$\alpha = f(x, x^+) dx^1 \cdots dx^n$

Notice that α is integrable along the even Lagrangian

$$L = \{x_1^+ = \dots = x_n^+ = 0\} \subset M.$$

What about more general Lagrangians?

More general Lagrangians

Homological perturbation theory gives us explicit formulas for working with half-densities and Δ as differential forms.

Our maps write half-densities locally as

$$\alpha = f(x, x^+) dx^1 \cdots dx^n$$

Notice that α is integrable along the even Lagrangian

$$L=\{x_1^+=\cdots=x_n^+=0\}\subset M.$$

What about more general Lagrangians?

More general Lagrangians

Homological perturbation theory gives us explicit formulas for working with half-densities and Δ as differential forms.

Our maps write half-densities locally as

$$\alpha = f(x, x^+) dx^1 \cdots dx^n$$

Notice that α is integrable along the even Lagrangian

$$L=\{x_1^+=\cdots=x_n^+=0\}\subset M.$$

What about more general Lagrangians?

Differential forms dR_M^* are integrable over submanifolds of odd dimension zero (k|0).

Integral forms Σ_M^* are integrable over sub(super)manifolds of odd codimension zero (k|n),

 $\Sigma_M^* = \operatorname{Ber}(M)[0]_{\mathrm{dR}} \otimes_{\mathcal{O}_M} \operatorname{Sym}(TM[1]_{\mathrm{dR}}).$

Note: Σ_M^* is a dR_M^* -dg-module, and is unbounded below in de Rham degree.

Consider, e.g.

 $f(x,x^+)\mathcal{D}(x,x^+)\otimes (\partial_{x^1})^{a_1}\cdots (\partial_{x^n})^{a_n}(\partial_{x^+_1})^{b_1}\cdots (\partial_{x^+_n})^{b_n}.$

Differential forms dR_M^* are integrable over submanifolds of odd dimension zero (k|0).

Integral forms Σ_M^* are integrable over sub(super)manifolds of odd codimension zero (k|n),

 $\Sigma_M^* = \mathsf{Ber}(M)[0]_{\mathrm{dR}} \otimes_{\mathcal{O}_M} \mathsf{Sym}(\mathcal{T}M[1]_{\mathrm{dR}}).$

Note: Σ^*_M is a $\mathrm{dR}^*_M\text{-dg-module},$ and is unbounded below in de Rham degree.

Consider, e.g.

$$f(x,x^+)\mathcal{D}(x,x^+)\otimes (\partial_{x^1})^{a_1}\cdots (\partial_{x^n})^{a_n}(\partial_{x^+_1})^{b_1}\cdots (\partial_{x^+_n})^{b_n}.$$

Our results from above all hold, *mutatis mutandis*:

there is an isomorphism

$|\Lambda_M^{\hbar}|^{1/2} \xrightarrow{\sim} H^*(\Sigma_M^{\hbar}, \Omega)$ $f|\mathcal{D}(x, x^+)|^{1/2} \mapsto f\mathcal{D}(x, x^+) \otimes \partial_{x^1} \cdots \partial_{x^n}$

• there is an SDR over which the de Rham differential on Σ_M^{\hbar} transfers to the BV operator $\Delta = \hbar \partial^2 / \partial x^i \partial x_i^+$ on half-densities

Our results from above all hold, mutatis mutandis:

there is an isomorphism

$$ert \Lambda^{\hbar}_{\mathcal{M}} ert^{1/2} \xrightarrow{\sim} \mathcal{H}^{*}(\Sigma^{\hbar}_{\mathcal{M}}, \Omega)$$

 $f ert \mathcal{D}(x, x^{+}) ert^{1/2} \mapsto f \mathcal{D}(x, x^{+}) \otimes \partial_{x^{1}} \cdots \partial_{x^{n}}$

• there is an SDR over which the de Rham differential on Σ_M^{\hbar} transfers to the BV operator $\Delta = \hbar \partial^2 / \partial x^i \partial x_i^+$ on half-densities

Our results from above all hold, mutatis mutandis:

there is an isomorphism

$$ert \Lambda^{\hbar}_{M} ert^{1/2} \stackrel{\sim}{\longrightarrow} H^{*}(\Sigma^{\hbar}_{M}, \Omega)$$

 $f ert \mathcal{D}(x, x^{+}) ert^{1/2} \mapsto f \mathcal{D}(x, x^{+}) \otimes \partial_{x^{1}} \cdots \partial_{x^{n}}$

• there is an SDR over which the de Rham differential on Σ_M^{\hbar} transfers to the BV operator $\Delta = \hbar \partial^2 / \partial x^i \partial x_i^+$ on half-densities

Our results from above all hold, mutatis mutandis:

there is an isomorphism

$$egin{aligned} &|\Lambda^{\hbar}_{M}|^{1/2} \overset{\sim}{\longrightarrow} H^{*}(\Sigma^{\hbar}_{M},\Omega) \ &f|\mathcal{D}(x,x^{+})|^{1/2} \mapsto f\mathcal{D}(x,x^{+}) \otimes \partial_{x^{1}} \cdots \partial_{x^{n}} \end{aligned}$$

• there is an SDR over which the de Rham differential on Σ_M^{\hbar} transfers to the BV operator $\Delta = \hbar \partial^2 / \partial x^i \partial x_i^+$ on half-densities

Future work

Pseudodifferential forms, introduced by Bernstein and Leites, are integrable over arbitrary submanifolds.

Question: Can our methods be extended to the case of pseudodifferential forms?

allow non-purely-even gauge-fixing with differential forms
 implement Kontsevich-Schwarz dual approach to BV integration

L can be thought of as a distributional pseudodifferential form

- gauge-fixing and the BV integrand on even footing
- functoriality of $(\Gamma(M, |\Lambda_M^{\hbar}|^{1/2}), \hbar\Delta)$
 - behavior over Lagrangian correspondences $L \hookrightarrow M_1 \times M_2$
 - pullback/pushforward of pseudodifferential forms

Future work

Pseudodifferential forms, introduced by Bernstein and Leites, are integrable over arbitrary submanifolds.

Question: Can our methods be extended to the case of pseudodifferential forms?

- allow non-purely-even gauge-fixing with differential forms
 - implement Kontsevich-Schwarz dual approach to BV integration

L can be thought of as a distributional pseudodifferential form

- gauge-fixing and the BV integrand on even footing
- functoriality of $(\Gamma(M, |\Lambda_M^{\hbar}|^{1/2}), \hbar\Delta)$
 - behavior over Lagrangian correspondences $L \hookrightarrow M_1 \times M_2$
 - pullback/pushforward of pseudodifferential forms

Future work

Pseudodifferential forms, introduced by Bernstein and Leites, are integrable over arbitrary submanifolds.

Question: Can our methods be extended to the case of pseudodifferential forms?

- allow non-purely-even gauge-fixing with differential forms
- implement Kontsevich-Schwarz dual approach to BV integration
 - L can be thought of as a distributional pseudodifferential form
 - gauge-fixing and the BV integrand on even footing
- functoriality of $(\Gamma(M, |\Lambda_M^{\hbar}|^{1/2}), \hbar \Delta)$
 - \blacktriangleright behavior over Lagrangian correspondences $L \hookrightarrow M_1 imes M_2$
 - pullback/pushforward of pseudodifferential forms
Future work

Pseudodifferential forms, introduced by Bernstein and Leites, are integrable over arbitrary submanifolds.

Question: Can our methods be extended to the case of pseudodifferential forms?

- allow non-purely-even gauge-fixing with differential forms
- implement Kontsevich-Schwarz dual approach to BV integration
 - L can be thought of as a distributional pseudodifferential form
 - gauge-fixing and the BV integrand on even footing
- functoriality of $(\Gamma(M, |\Lambda_M^{\hbar}|^{1/2}), \hbar\Delta)$
 - behavior over Lagrangian correspondences $L \hookrightarrow M_1 \times M_2$
 - pullback/pushforward of pseudodifferential forms

Thank you!