The Batalin-Vilkovisky Laplacian from
homological perturbation theory

Nilay Kumar

August 3, 2021

1/37



Batalin-Vilkovisky formalism

GAUGE ALGEBRA AND QUANTIZATION

I.A. BATALIN

Physical Lebedev Institute, Academy of Sciences, Moscow, USSR
and

G.A. VILKOVISKY

State Committe of Standards, Moscow, USSR

Received 3 March 1981

In respectful memory of Professor Berezin

Quantization of a general gauge theory in the lagrangian approach is accomplished in closed form. The generating equa-
tion is found, containing all the relations of the open gauge algebra. A new class of diagrams is revealed, required by BRS-
symmetry, but completely definable only from the requirement of unitarity.
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Batalin-Vilkovisky formalism

The BV formalism adds to the gauge theory extra fields: ghosts
and antifields.
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Batalin-Vilkovisky formalism

The BV formalism adds to the gauge theory extra fields: ghosts
and antifields. The action is modified

Sgy = So + hS1 + h2Sy + - - -

to satisfy the quantum master equation (QME)

1 .
E(SBV, ng) — IhASBV =0.
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Batalin-Vilkovisky formalism

The BV formalism adds to the gauge theory extra fields: ghosts
and antifields. The action is modified

Sgy = So + hS1 + h2Sy + - - -

to satisfy the quantum master equation (QME)

1

5(55v,55v)~—/ﬁ[353v =0.

The QME ensures that the BV functional integrals are
well-defined, independent of gauge fixing Lagrangian L:

[t )

L

The geometric context for the BV formalism is odd symplectic
geometry.
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The BV Laplacian

In Darboux coordinates {x",xfr},-:;l,,,.,,, on a finite-dimensional odd
symplectic supermanifold (M, w),

u 82 A2 _
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The BV Laplacian

In Darboux coordinates {x",xfr},-zl,,,.y,, on a finite-dimensional odd
symplectic supermanifold (M,w),

u 82 A2 _

Theorem (Khudaverdian, 2004)

The BV operator A = 82/8x"8x,-Jr acts covariantly on the
half-densities T (M, |Ap|Y/?) of an odd symplectic supermanifold.

Khudaverdian classifies the canonical transformations of Darboux
coordinates on odd symplectic manifolds and manually checks that
A transforms appropriately.
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The BV Laplacian

Later, Severa obtained results linking half-densities to differential
forms on M. He gave a spectral sequence construction of A.

5/37



The BV Laplacian

Later, Severa obtained results linking half-densities to differential
forms on M. He gave a spectral sequence construction of A.

We present a new, independent proof of Khudaverdian's result:
Theorem (K.)

The BV operator arises locally from homological perturbation
theory; that is, transferring the perturbation d = dgr of the
right-hand side of

i

Y

(NP2(U.0 @R W)
~_

p

yields the BV operator h/A on the left. The perturbation setup lifts
to Cech complexes, and thus the BV Laplacian globalizes to an
operator on the sheaf of half-densities.
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Sign conventions

We work with graded supermanifolds, where coordinates have:
» an internal parity p(¢') € Z/27Z
» an integer grading gh(¢') € Z known as the ghost number
The Koszul signs are determined by the total parity

6’| = p(¢') + gh(¢').
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Odd symplectic geometry
A (—1)-shifted odd symplectic form w on M is a closed two-form
providing an isomorphism

w: ™™ — T*[-1]M
vi—= w(v,—)

Note: w(v,w) = 0 unless gh(v) + gh(w) = —1.
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Odd symplectic geometry

A (—1)-shifted odd symplectic form w on M is a closed two-form
providing an isomorphism
w: ™™ — T*[-1]M
vi—= w(v,—)
Note: w(v,w) = 0 unless gh(v) + gh(w) = —1.

By Darboux’s theorem, we can choose coordinates

(xY, ... x"x, . x;T) such that

w = dxf”/\dxi,

where |x’| = 0. We will moreover ask that the body of M is
oriented and that the x' provide an oriented chart for M.
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Severa's extra differential

The symplectic form w is odd in the de Rham complex:
gh(w) = —1,p(w) = 0, degap(w) =2 — [w| =1
and hence squares to zero:

w? =0.
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Severa's extra differential

The symplectic form w is odd in the de Rham complex:
gh(w) = —1, p(w) = 0, deggn(w) =2 —> || =1
and hence squares to zero:
w? =0.
Severa observed that multiplication by w,
Q=nhtwA-
provides an extra differential on the de Rham complex:

Q> =0, [Q, dar] = 0.
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Half-densities

Proposition (Severa, 2006)

Let (M,w) be an odd symplectic supermanifold such that the body
of M is oriented. Then there is an isomorphism of Of\i/,-modules

W 2 H*(dR}y, Q) — [Ay|"2,
such that, on a Darboux chart U,

Yu(flax* - dx) = F|D(x, xT)[/2,
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Half-densities

Proposition (Severa, 2006)

Let (M,w) be an odd symplectic supermanifold such that the body
of M is oriented. Then there is an isomorphism of Of\i/,-modules

W 2 H*(dR}y, Q) — [Ay|"2,
such that, on a Darboux chart U,

Yu(flax* - dx) = F|D(x, xT)[/2,

The proof proceeds in two steps:
1. local cohomology computation
2. analysis of the transformation properties
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Cohomology of €
Define, on dR%,(U),
A= hu(@,)(0,)
Notice that

gh(A) = 1,p(A) = 0, deggp(A) = ~2 — |A| = 1.
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Cohomology of €

Define, on dR%,(U),
A = hu(D)u(0,.:)
Notice that

gh(A) = 1,p(A) = 0, deggp(A) = ~2 — |A| = 1.

Lemma (Severa)

The commutator [, \] is a semisimple operator on dR},(U). For
a monomial a € dR%,(U),

[Q,A]ae = (n — deg g, a + degg+ r)cr.
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Cohomology of €

Write dR};(U), for the subcomplex of forms with eigenvalue m
under [Q,A]. Then

o0

(dR}(V), Q) = P (AR} (U)m, Q).

m=0

Notice that n — deg,, + deg,,+ is bounded below by 0, with

(dR%, (U)o, Q) = (O} (V) - dx* - - - dx",0).
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Cohomology of €

Lemma

The inclusion
i: (dR}(V)o,0) = (dR}(U), Q).

is a quasi-isomorphism.
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Cohomology of €

Lemma

The inclusion

i (dR},(U)o,0) <= (dRE,(U), Q).
is a quasi-isomorphism.
We build a homotopy h : dR%,(U) — dRL,(U),

poy = 40 a € dR%, (U)o
m~ A a € dRR,(U)m, m#0.
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Cohomology of Q2

Lemma

The inclusion
i+ (dRy(U)o,0) = (dRf(V), Q).
is a quasi-isomorphism.

We build a homotopy h : dR%,(U) — dR},(U),

poy = 40 a € dR%, (U)o
m~ A a € dRR,(U)m, m#0.

Then, if p is the projection to dR},(U)o,

id—1iop=1[Q,h.
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How does dx transform?

Thus the cohomology H*(dR},(U), Q) is generated, on U, by

dxt - dx",
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How does dx transform?

Thus the cohomology H*(dR},(U), Q) is generated, on U, by

dxt- - dx”.
In another Darboux coordinate system, (y!,... ,y”,y1+, oy,
by ' _
. .8y’ 8y’
I J-7 +
dy' = dx BV +de- Eyet

J
the generator transforms as

dyldyn: dxldxndet <8y> _|_
ox/
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How does dx transform?

The omitted terms in

dyl---dy”:dxl--~dx”det<ay.> .
oxJ

involve dxt and are Q-exact.
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How does dx transform?

The omitted terms in

dyl---dy”:dxl--~dx”det<ay.> .
oxJ

involve dx™ and are Q-exact. Hence the cohomology classes

transform
dy'
det _
) <axf> ’

according to the inverse determinant of the top-left block of

ox Ox
_ | 9y Oyt
T=1ox oxt
dy oyt

[dy'---dy"] = [dx!--- dx"]
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Half-densities

Lemma (Khudaverdian-Voronov, 2006)

Let A be a symplectic automorphism of an odd symplectic
superspace (V,w). Then

Ber(A) = det(A00)2,

where Agg Is the even-even block.
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Half-densities

Lemma (Khudaverdian-Voronov, 2006)

Let A be a symplectic automorphism of an odd symplectic
superspace (V,w). Then

Ber(A) = det(Ag)?,
where Agg Is the even-even block.
The formula
[dy* - dy"] = [dx' - dx"] - | det(Too)| ™ (2)

is precisely the transformation rule for half-densities. This
completes the proof of Severa's result.
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Strong deformation retractions

In the proof of Severa’s result, we have constructed a diagram

i

TN
(2.0 @RW.R)
~_

p

such that
pi = id, id — ip = [Q, h].

This data can be systematized in the notion of a strong
deformation retraction — this reformulation leads to our
construction of A.
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Strong deformation retractions

Definition

A strong deformation retraction (SDR) of complexes is a diagram

i

T
C,d D,d h
(€de) (D) D

p

where i and p are maps of complexes and h is a map of degree —1,

such that
p’ = idCa 1dD - Ip = [dD7 h]?

together with the side conditions

hi =0, ph =0, h? = 0.
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Homological perturbation lemma

Theorem (Homological perturbation lemma)

Let 0 be a small perturbation of dp, that is, the operator
(idp — &h) is invertible. Then there exists a perturbed strong
deformation retraction

i'=(1+hA)i

/\

(C,dp = dc + pAi) (D,dp = dp +9) W =h+hAh

\_/

p'=p(1+Ah)

where A = (idp — dh)~14.
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Homological perturbation lemma

Theorem (Homological perturbation lemma)

Let 0 be a small perturbation of dp, that is, the operator
(idp — &h) is invertible. Then there exists a perturbed strong
deformation retraction

i'=(1+hA)i

/\

(C,dp = dc + pAi) (D,dp = dp +9) W =h+hAh

\_/

p'=p(1+Ah)
where A = (idp — dh)~14.

These formulas were originally discovered by Shih (1962) and
Brown (1965) in studying the homology of fiber bundles.
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Local construction of A

i

Y

(20,0 @RW.R)
\/

p
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Local construction of A

i

Y

(20,0 @RW.R)
\/

p

Lemma

The de Rham differential d = dqgr is a small perturbation of € on
the right.

Proof.

The sum
(1—dh)y ' =1+ dh+dhdh+ -

is finite on any de Rham monomial: degyg d =1 but
deggr h = —2. 0l
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Local construction of A

Applying the perturbation lemma, we obtain

i/

/////”'__“‘\\\\ﬂ
(1N 12(U). pAY (dRMU),MddD,,,
‘\\\\\\\\_____”///,///

/

p
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Local construction of A

Applying the perturbation lemma, we obtain

i/

/////”'__““\\\\ﬂ
(1N 12(U). pAY (dRMU),MddD,,,
‘\\\\\\\s____”///////

/

p

Theorem (K.)
The transferred differential on |AL,|*/?(U) is the BV Laplacian

62
Ox1Ox;"

pAi = LA = h
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Proof
Let u = f|D(x,xT)[¥/2 € |A},|Y/2(U). Then

pAip = p(1 — dh)Ld(fdx* - - - dx™)
= p(d + dhd 4 dhdhd + - - - )fdx! - - - dx"
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Proof

Let u = f|D(x,xT)[¥/2 € |A},|Y/2(U). Then

pAip = p(1 — dh)Ld(fdx* - - - dx™)
= p(d + dhd 4 dhdhd + - - - )fdx! - - - dx"
= pdhd(fdx* - - - dx")

because p is non-zero only on forms of de Rham degree n.
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Proof

Let u = f|D(x,xT)[¥/2 € |A},|Y/2(U). Then

pAip = p(1 — dh)Ld(fdx* - - - dx™)
= p(d + dhd 4 dhdhd + - - - )fdx! - - - dx"
= pdhd(fdx* - - - dx")
because p is non-zero only on forms of de Rham degree n.

The remaining term is computed:

0?f
pdhd(fdx* - - dx") = h————|D(x, x")|/2.
Oxkox;t
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Intertwining A and Q + d

"/

/////”—_-‘\\\\\y
(IN2(U), ) (dRMU),MdﬂDh,
\/

p
The map /" intertwines the differentials

i'(hAp) = (Q + dar)i’ e
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Intertwining A and Q + d

"/

///,//”'___"‘\\\\\j
(IN2(U), ) (dRMU),MdﬂDh,
\/

p
The map /" intertwines the differentials
I'(hAp) = (Q+ dar)i'p

Explicitly, if u = f!D(x,x+)|1/2 e |/\7/,|1/2(U),

i'p= Z Z :I:fb’a o kR,

20 ky<m<h; X axkl
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Globalization

The map i : |A} [2(U) — dR}, (V) is coordinate-dependent:

dyl'-‘dyn:dX1~-dx”det<gyj>+~-

X-

and so the SDR from before is not an SDR of sheaves.
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Globalization

The map i : [A} [Y/2(U) — dR},(U) is coordinate-dependent:

i

dyl'-‘dyn:dX1~-dx”det<gyj>+~-

X-

and so the SDR from before is not an SDR of sheaves.

Our goal is to prove:

Theorem

The local expression h9?/0x' 8XI.Jr for the BV Laplacian on
half-densities globalizes to a differential on T (M, |A\},|1/2).
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Cech complexes

To prove the theorem we upgrade our SDR to a SDR of Cech total
complexes:

i

A

(Tot* C(U, |\, [1/2),0) (Tot* C(u,dR’X,,),EDh

\_/

P
Here U is a cover of M by Darboux charts as before, and

(Tot“ Ct, INu1Y2),00= T TT (AMIYZ) Vi),

ptq=kio,....ip

(Tot" CU,dRY), ) = ] ] (dRM)(Uip--iy)-
p+q=k io,...,ip
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Cech complexes

To prove the theorem we upgrade our SDR to a SDR of Cech total
complexes:

i

A

(Tot* C(U, |N}y[*?),0) (Tot* C(U, dR}), @h

\_/

p

The maps i, p, and h are defined on each intersection U,-O...,-J. as in
the local case, using the coordinates on Uj.
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d as a perturbation

The map i needs to be modified in order to intertwine dy with
d+ Q.
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d as a perturbation

The map i needs to be modified in order to intertwine dy with
d+ Q.
Key idea: treat d as a perturbation of the right-hand side.
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d as a perturbation

The map i needs to be modified in order to intertwine dy with
d+ Q.

Key idea: treat d as a perturbation of the right-hand side.
Lemma

The Cech differential d is a small perturbation of Q; that is,
(id — dh) is invertible.
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d as a perturbation

Applying the homological perturbation lemma yields the SDR:

,'l

/_\

(Tot* C(U, [} [*/?), pAi) (Tot* C(U,dR}), Q —@h,

\/

/

p
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d as a perturbation

Applying the homological perturbation lemma yields the SDR:

,'l

/_\

(Tot* C(U, [} [*/?), pAi) (Tot* C(U,dR}), Q —@h,

\/

/

p

Proposition

The new differential on the left is the Cech differential:

pAi = p(d + dhd + ---)i = pdi = dj.

27/37



Back to djr

We now repeat the argument in the local setting.

I'/

/_\

(Tot* C(U. Ny [1/2),dp)  (Tot* €U, dR},), 0 —@ ,

\_/

/

p

Perturb the right-hand side by the de Rham differential dyg.
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Back to djr

We now repeat the argument in the local setting.

I'/

/_\

(Tot" CQUING[Y2).ch)  (Tot" C(U,dR}y). @ —@ v

\/

/

p

Perturb the right-hand side by the de Rham differential dyg.

Lemma

The de Rham differential dag is a small perturbation of Q + d;
that is, (id — dgrh’) = (id — dyr(h + hAh)) is invertible.
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Back to djr

Applying the perturbation lemma again, we obtain

(Tot* C(U, N}y /?), dp + p'A'i") (Tot* C(U,dR},), Q + d + d)

\_/

11

p
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The differential p’A’/’

The perturbation p’A’i’ of dp on the left is:

Pp'A" = (p + pAh)(1 — dh')~1d(i + hAJ)
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The differential p’A’/’

The perturbation p’A’i’ of dp on the left is:

Pp'A" = (p + pAh)(1 — dh')~1d(i + hAJ)

Lemma
The new differential on the left is dy + pdhdi.
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Cech 0-cocycles

We now have a new differential dy + pdhdi on the left:
h//

(Tot* C(U, |}y |*?), dp + pdhdi) (Tot* C(U,dR},), Q + d + d)

\/

p//

The differential pdhdi has Cech degree zero and commutes with d:
it sends Cech 0-cocycles to Cech 0-cocycles.
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Cech 0-cocycles

Thus pdhdi restricts to a well-defined operator on global sections
of \/\?,,|1/2.
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Cech 0-cocycles

Thus pdhdi restricts to a well-defined operator on global sections
of \/\Ml/z.
We have already calculated:

82

Ox'Ox;
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Cech 0-cocycles

Thus pdhdi restricts to a well-defined operator on global sections
of |l [1/2,
We have already calculated:

2

0
dhdi = h———
pandi 8X’8X,-+

= hA.

Hence we obtain a new proof of Khudaverdian's result:
Theorem (K.)

The differential dy + pdhdi on Tot* C(U, |A},|1/?) restricts to the
BV operator 1% /dx'0x;" on the global sections (M, |\},[}/2) of
the sheaf of half-densities on an odd symplectic supermanifold.
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More general Lagrangians

Homological perturbation theory gives us explicit formulas for
working with half-densities and A as differential forms.
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More general Lagrangians

Homological perturbation theory gives us explicit formulas for
working with half-densities and A as differential forms.

Our maps write half-densities locally as
a = f(x,xT)dx! - dx"

Notice that « is integrable along the even Lagrangian
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More general Lagrangians

Homological perturbation theory gives us explicit formulas for
working with half-densities and A as differential forms.

Our maps write half-densities locally as
a = f(x,xT)dx! - dx"
Notice that « is integrable along the even Lagrangian

L={x=---=xF=0}cm.

What about more general Lagrangians?

33/37



Integral forms

Differential forms dR}, are integrable over submanifolds of odd
dimension zero (k|0).
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Integral forms

Differential forms dR}, are integrable over submanifolds of odd
dimension zero (k|0).

Integral forms X}, are integrable over sub(super)manifolds of odd
codimension zero (k|n),

v = Ber(M)[0]ar ®0,, Sym(TM[1]4r).

Note: X7, is a dR}-dg-module, and is unbounded below in de
Rham degree.

Consider, e.g.

Fx,xF)D(x,xT) @ (8a)™ -+ (Oxn) ™ (D)™ -+ (9,)"
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Integral forms

Our results from above all hold, mutatis mutandis:
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Integral forms

Our results from above all hold, mutatis mutandis:

P there is an isomorphism

’/\h ’1/2 H*(Zh ,Q)
FID(x, x )% = FD(x,xT) ® 1 - - - Byen
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Integral forms

Our results from above all hold, mutatis mutandis:
P there is an isomorphism
’/\h ’1/2 H*(Zh ,Q)
FID(x, xT) Y2 = FD(x,x+) @ O - - - Ouen
» there is an SDR over which the de Rham differential on Z’X/,

transfers to the BV operator A = h9%/0x'9x;" on
half-densities
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Integral forms

Our results from above all hold, mutatis mutandis:

P there is an isomorphism

’/\h ’1/2 H*(Zh ,Q)
FID(x, xT) Y2 = FD(x,x+) @ O - - - Ouen

> there is an SDR over which the de Rham differential on 7,
transfers to the BV operator A = h9%/0x'9x;" on
half-densities

Thus: for a purely-odd gauge fixing, the BV operator arises
naturally from the de Rham differential on 3},
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Future work

Pseudodifferential forms, introduced by Bernstein and Leites, are
integrable over arbitrary submanifolds.

Question: Can our methods be extended to the case of
pseudodifferential forms?
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Future work

Pseudodifferential forms, introduced by Bernstein and Leites, are
integrable over arbitrary submanifolds.

Question: Can our methods be extended to the case of
pseudodifferential forms?
» allow non-purely-even gauge-fixing with differential forms

» implement Kontsevich-Schwarz dual approach to BV
integration

» [ can be thought of as a distributional pseudodifferential form

» gauge-fixing and the BV integrand on even footing
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Future work

Pseudodifferential forms, introduced by Bernstein and Leites, are
integrable over arbitrary submanifolds.

Question: Can our methods be extended to the case of
pseudodifferential forms?
» allow non-purely-even gauge-fixing with differential forms

» implement Kontsevich-Schwarz dual approach to BV
integration

» [ can be thought of as a distributional pseudodifferential form
» gauge-fixing and the BV integrand on even footing
> functoriality of (F(M, |A%,|1/2), hA)
» behavior over Lagrangian correspondences L — M; x M,
» pullback/pushforward of pseudodifferential forms
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Thank you!
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