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1. Deligne cohomology

1.1. Differential cohomology. Ordinary differential cohomology is a refinement
of ordinary (integral) cohomology for manifolds in the sense that it retains geomet-
ric data in the guise of differential forms. Differential cohomology theories do not
fall under the umbrella of (generalized) cohomology theories as they follow funda-
mentally different axioms. We will focus here on ordinary differential cohomology
and in particular a rather workable model known as smooth Deligne cohomology.
Before we get into details, however, it is worth keeping in mind some generalities.

Ordinary differential cohomology fits into a diagram

Ωn−1(X)/im(d) Ωncl(X)

Hn−1
dR (X) Ĥn(X;Z) Hn

dR(X)

Hn−1(X;R/Z) Hn(X;Z)

d

a R

I

−β

where the diagonal sequences are exact and the top and bottom are long exact
(the bottom being part of the Bockstein sequence). This diagram shows that ordi-
nary differential cohomology is fundamentally determined by the interplay between
differential forms, de Rham cohomology, and singular cohomology and in fact the
axiomatics can be stated in terms of this diagram.
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More generally, Bunke Nikolaus and Volkl have shown that any sheaf on the site
of manifolds valued in a stable infinity-category gives rise to such a diagram/theory.
In this sense differential cohomology is the natural cohomology theory for manifolds.

1.2. The Deligne model. Let’s explain Deligne’s model for differential cohomol-
ogy. The kth Deligne complex (for k ≥ 1) is the cochain complex of sheaves

ZD,∞(k) = Z ↪→ Ω0 d−→ Ω1 → · · · → Ωk−1.

The kth Deligne cohomology is the kth sheaf (hyper)cohomology group of the
kth Deligne complex:

Ĥk(X;Z) := Hk(X;ZD,∞(k)•).

This is a rather abstract definition, but we can always compute these groups by
writing a Čech resolution of the complex, say, after choosing a fine enough open
cover of our manifold X.1 Without having to do that, however, it is clear that

Ĥ0(X;Z) = H0(X;Z[0]) = H0(X;Z).

Let’s compute the next simplest example. We will be dropping the underline
under the constant sheaf Z for ease of notation. Consider ZD,∞(1) = Z → Ω0.

We obtain a double complex coming from (applying global sections to) the Čech
resolution:

Č0(Z) Č0(Ω0)

Č1(Z) Č1(Ω0)

Č2(Z) Č2(Ω0)

...
...

The first sheaf cohomology can now be written as the first cochain cohomology of
the associated total complex. If we denote the horizontal differential by d and the
vertical differential by δ, the differential in the total complex is given

D = d+ (−1)pδ

where p is the horizontal degree. In particular we compute the cohomology at

Č0(Z)→ Č0(Ω0)⊕ Č1(Z)→ Č1(Ω0)⊕ Č2(Z)

Notice that the second map sends

(fα, nαβ) 7→ (fα − fβ + nαβ , nβγ − nαγ + nαβ).

Hence the kernel consists of the data of real-valued functions on Uα that glue up
to an integer, with the integer satisfying the expected cocycle condition. This data
patches together to yield a smooth map X → U(1). On the other hand, the image
of the first map is the data of a locally constant integral-valued function on each Uα
together with, on overlaps, the data of the difference in these integers. According to

1Recall that by Riemannian geometry we can always find a differentiably good open cover of
X, i.e. one where the opens and all intersections are contractible.
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the interpretation as a map to U(1) these yield the trivial map X → U(1) sending
x 7→ 1 for all x ∈ X. We conclude that

H1(X;ZD,∞(1)) ∼= C∞(X,U(1)).

Let’s next try to recover line bundles with connection. We have the complex of
sheaves

ZD,∞(2) = Z→ Ω0 → Ω1.

Again using a Čech resolution, we have

Č0(Z) Č0(Ω0) Č0(Ω1)

Č1(Z) Č1(Ω0) Č1(Ω1)

Č2(Z) Č2(Ω0) Č2(Ω1)

Č3(Z) Č3(Ω0) Č3(Ω1)

...
...

...

We are interested in the cohomology of the total complex at:

Č0(Ω0)⊕ Č1(Z)→ Č0(Ω1)⊕ Č1(Ω0)⊕ Č2(Z)→ Č1(Ω1)⊕ Č2(Ω0)⊕ Č3(Z).

The second map is given

(Aα, fαβ , nαβγ) 7→ (Aβ −Aα + dfαβ ,−fβγ + fαγ − fαβ + nαβγ , δn).

Let’s look first at the second component. The requirement that the second compo-
nent vanish allows us to construct a line bundle L → X with transition functions
given exp(2πifαβ) : Uα ∩Uβ → U(1). We now use the one-forms Aα to construct a
connection on this line bundle. Fix trivializing sections sα on Uα. By construction
we have that

sα = e2πifαβsβ .

Define, on Uα the connection ∇α = d + 2πiAα. These connections glue to a con-
nection on L: Fix the sign.

∇αsα = (d+ 2πiAα)(e2πifαβsβ) = 2πidfαβe
2πifαβsβ + 2πiAαsβ

= 2πiAβe
2πifαβsβ = e2πifαβ∇βsβ ,

as desired. Here we have used that Aβ − Aα + dfαβ = 0. To conclude that degree
two Deligne cohomology computes isomorphism classes of complex line bundles
with connection it remains to check that the image of the first map yields trivial
bundles equipped with trivial connection. The map sends

(fα, nαβ) 7→ (dfα, fα − fβ + nαβ , nβγ − nαγ + nα,β).
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The transition functions induced by this data are of the form exp(2πi(fα − fβ)).
Choosing trivializations sα on Uα we obtain a global trivialization given on Uα by
e2πifαsα becauseThere’s a sign issue here. . .

e2πifαsα = e2πifαe2πi(fβ−fα)sβ = e2πifβsβ .

Moreover the connection defined as above, ∇α = d + 2πidfα, is trivial on these
sections:Another sign wrong. . .

∇α(e2πifαsα) = 0.

Thus we conclude thatWhat’s up with the
hermitian metric?

H2(X;ZD,∞(2)) ∼= {line bundles with connection}/ ∼ .
What should the third Deligne cohomology group compute? Well U(1) functions

are glued together up to integers while line bundles are glued together up to U(1)
functions. It is natural to expect, then, that the degree three objects should be
glued together using line bundles. This will lead us to the notion of a bundle gerbe.

1.3. Ring structure. Just as ordinary cohomology has a natural ring structure,
it turns out that ordinary differential cohomology is also equipped with a multipli-
cation. Recalling our computations from above this means that the product should
give us a way of constructing a line bundle from two U(1)-functions, a gerbe from
a line bundle and a U(1)-function, etc. We can obtain this multiplication from
a rather straightforward (if somewhat mysterious) multiplicative structure on the
Deligne complexes, known as the Beilinson-Deligne cup product:

^: ZD,∞(k)⊗ ZD,∞(`)→ ZD,∞(k + `)

given by (over each open set)

x ^ y =


x · y deg x = 0

x ∧ dy deg x > 0,deg y = `

0 otherwise

There is the slight complication that the tensor product of sheaves need not be
a sheaf, but we can define the above map as a map of presheaves and since the
target is a sheaf we obtain an induce a map of sheaves by the universal property of
sheafification which will satisfy all the properties of the map of presheaves.

The following properties are not very difficult to check but we write them out to
get some concrete practice working with the product.

Proposition 1. The BD cup product enjoys the following properties:

(a) it is a map of complexes, i.e. it satisfies the (graded) Leibniz rule,
(b) it is associative,
(c) it is (graded) commutative up to homotopy,
(d) 1 is a left unit and hence a right unit up to homotopy.

Proof. We will use d̃ to denote the differential on the Deligne complex to distinguish
it from the de Rham differential (they differ of course only in degree 0). The graded
Leibniz rule requires that

d̃(x ^ y) =^ (d̃(x⊗ y)) = d̃x ^ y + (−1)|x|x ^ d̃y.

There are three cases: the first is where |x| = 0, the second is where |x| 6= 0 and
|y| = `, and the third is where |x| 6= 0 and |y| 6= `. In the first case both sides of
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the above equation equal xd̃y and in the second case both equal dx ∧ dy. For the
third case if |y| 6= `− 1 then we have zero on both sides. If |y| = `− 1 then the left
is zero and the right is (−1)|x|x ∧ d2y = 0 as well.

For associativity one checks that the diagram

ZD,∞(k)⊗ ZD,∞(`)⊗ ZD,∞(m) ZD,∞(k)⊗ ZD,∞(`+m)

ZD,∞(k + `)⊗ ZD,∞(m) ZD,∞(k + `+m)

id⊗^

^⊗ id ^

^

commutes. Finish this.

Finally we check that the diagram

ZD,∞(k)⊗ ZD,∞(`) ZD,∞(k + `)

ZD,∞(`)⊗ ZD,∞(k)

^

τ ^

commutes up to homotopy where τ(x ⊗ y) = (−1)|x||y|y ⊗ x, i.e. there exists a
cochain homotopy h such that

x ^ y − (−1)|x||y|y ^ x = dh+ hd

as maps ZD,∞(k)⊗ ZD,∞(`)→ ZD,∞(k + `). Our candidate for h is the following:

h(x⊗ y) =

{
0 |x| = 0 or |y| = 0

−(−1)|x|x ∧ y otherwise.

For the sake of concreteness let us check explicitly that h does indeed provide a
cochain homotopy. There are nine cases to check (three cases for each case of x
and y as given in the definition of the multiplication). Let us write ι : Z ↪→ Ω0 for
the inclusion of integers (we may assume our open is connected) into the smooth
functions. One has to be careful to note that | · | denotes degree in the Deligne
complex and not the differential form degree. Moreover one should distinguish
between the Deligne differential in the source and target (of h). The cases are:

(1) |x| = 0 and |y| = 0. Then the left is xy − yx = 0 and the right is h(ι(x)⊗
y) + h(x⊗ ι(y)) = ι(x)y − xι(y) = 0.

(2) |x| = 0 and 0 < |y| < `. Then the left is xy − 0 = xy and the right is
h(ι(x)⊗ y) = ι(x)y.

(3) |x| = 0 and |y| = `. Then the left is xy−0 = xy and the right is h(ι(x)⊗y) =
ι(x)y.

(4) 0 < |x| < k and |y| = 0. Then the left is 0 − yx = −yx and the right is
(−1)|x|h(x⊗ ι(y)) = −xι(y) = −ι(y)x.

(5) 0 < |x| < k and 0 < |y| < `. Then the left is 0 and the right is −(−1)|x|d̃x∧
y − (−1)|x|(−1)|x|−1x ∧ d̃y − (−1)|x|+1d̃x ∧ y − (−1)|x|(−1)|x|x ∧ d̃y = 0.

(6) 0 < |x| < k and |y| = `. Then the left is x ∧ dy − 0 and the right is

−(−1)|x|d̃x ∧ y − (−1)|x|(−1)|x|−1x ∧ d̃y − (−1)|x|+1dx ∧ y + 0 = x ∧ dy.
(7) |x| = k and |y| = 0. Then the left is −yx and the right is −xι(y).
(8) |x| = k and 0 < |y| < `. Then the left is −(−1)|x||y|y ∧ dx and the right is
−(−1)|x||y|y ∧ dx.
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(9) |x| = k and |y| = `. Then the left is x ∧ dy − (−1)|x||y|y ∧ dx and the right

is −(−1)|x|d̃x ∧ y − (−1)|x|(−1)|x|−1x ∧ d̃y, which simplifies to the left.

We conclude that the BD cup product is commutative up to homotopy. The last
statement is clear. �

Remark 2. Notice that while the homotopy h constructed in the proof above is a
binary operation, it is not associative. For example, if we take x⊗y⊗ z with x, y, z
homogeneous of nonzero degree then

h(h(x⊗ y)⊗ z) = −(−1)|x|h(x ∧ y ⊗ z) = (−1)|x|(−1)|x|+|y|−1x ∧ y ∧ z

whereas

h(x⊗ h(y ⊗ z)) = −(−1)|y|h(x⊗ y ∧ z) = (−1)|x|+|y|x ∧ y ∧ z,

which differs by a sign −(−1)|x|.
Moreover h is not (graded) commutative. By definition, for x, y homogeneous of

nonzero degree

h(x⊗ y) = −(−1)|x|x ∧ y
whereas

(−1)|x||y|h(y ⊗ x) = −(−1)|x||y|(−1)|y|y ∧ x

= −(−1)|y|(|x|+1)(−1)(|x|+1)(|y|+1)x ∧ y

= (−1)|x|x ∧ y.

In particular we see that h is anti-graded-commutative.
A similar situation arises when defining the cup product on singular cochains (or

similar the cup product on Čech cohomology). There the product is commutative
up to a homotopy known as the cup-1 product ^1, due to Steenrod. This product
is in turn commutative up to a homotopy known as the cup-2 product, and so on. In
other words, the cup product is commutative up to a family of coherent homotopies.
This yields, in particular, the structure of an E∞-algebra on singular cochains (for
explicit construction of the operad via these higher cup products see the paper of
McClure and Smith). More abstractly, the E∞-structure arises from the fact that
every space is a cocommutative comonoid via the diagonal map, as explained to
me by Elden: the singular cochains functor from Spacesop → Ch is monoidal up to
homotopy (this is the Eilenberg-Zilber theorem) and it is a fact that such functors
preserve commutative (up to homotopy) monoid objects. This last fact is some sort
of homotopy transfer result, e.g. commutative algebra structures can be transferred
over weak equivalences to yield E∞-structures.

Do we have a similar structure on the Deligne complex? To do this concretely
would require us to write down higher BD cup products. We have written down
the analog of the ^1 product as h above, but I’m not sure how to write down the
higher homotopies. Alternatively we might look for an abstract origin for an E∞
structure whose zeroth order product is the BD cup product. Beilinson, in the paper
where he introduces the BD product, remarks that the product is precisely coming
from the fact that the Deligne complex can be written as a homotopy pullback of
commutative dgas Z→ Ω• ← Ω≥k and that this induces an “Alexander-Whitney”
product on the Deligne complex. Again, this is some sort of homotopy transfer
result.
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Abstractions aside, it is instructive to write down explicit Čech formulas for the
product of Deligne cocycles. Recall that we can compute kth Deligne cohomol-
ogy as the kth cohomology of the total complex of a double complex which is a
Čech resolution of the kth Deligne complex. In particular we are interested in the
cohomology at

· · · →
⊕

i+j=k−1

Či(U ;ZD,∞(k)j)→
⊕
i+j=k

Či(U ;ZD,∞(k)j)→
⊕

i+j=k+1

Či(U ;ZD,∞(k)j)→ · · ·

where the differentials are the usual combination of the de Rham and Čech differ-
entials. We obtain a map ⊕
i+j=k

Či(U ;ZD,∞(k)j)

⊗
⊕
i+j=`

Či(U ;ZD,∞(`)j)

→ ⊕
i+j+k+`

Či(U ;ZD,∞(k+`)j)

using (components of) the cup product defined above together with the Čech cup
product. One has to check that the product of cocycles is again a cocycle and that
multiplying against coboundaries yields coboundaries.

For simplicity and concreteness let us just check this for the case where we mul-
tiply two degree-one cocycles. Geometrically this will correspond to constructing
a line bundle (up to isomorphism) from two smooth U(1)-valued functions. Recall
that

ZD,∞(1) = Z ↪→ Ω0, ZD,∞(2) = Z ↪→ Ω0 → Ω1.

Thus we wish to write down explicitly the multiplication map(
Č0(U ; Ω0)⊕ Č1(U ;Z)

)⊗2 ^−→ Č0(U ; Ω1)⊕ Č1(U ; Ω0)⊕ Č2(U ;Z)

induced by the cup product ^ defined above. Consider an element (f, n)⊗ (g,m)
on the left. Expanding the tensor product we first have a map

Č0(U ; Ω0)⊗ Č0(U ; Ω0)→ Č0(Ω1)

which sends f ⊗ g to the Čech zero-cochain

(f ^ g)α = fα ^ gα = fαdgα.

by the definition of the product above. Next we have a map

Č0(U ; Ω0)⊗ Č1(U ;Z)⊕ Č1(U ;Z)⊗ Č0(U ; Ω0)→ Č1(U ; Ω0)

sending n⊗ g + f ⊗m to the Čech one-cochain

(n ^ g)αβ = nαβgβ

(f ^ m)αβ = 0.

Finally we have a map

Č1(U ;Z)⊗ Č1(U ;Z)→ Č2(U ;Z)

given by sending n⊗m to the Čech two-cochain

(n ^ m)αβγ = nαβmβγ .

These are the explicit formulas for the product of two Deligne one-cochains. Let us
check that the product of cocycles is a cocycle. Recall that for (f, n) and (g,m) to
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be cocycles we require that

fα − fβ + nαβ = 0, nβγ − nαγ + nαβ = 0

gα − gβ +mαβ = 0, mβγ −mαγ +mαβ = 0.

We wish to check that applying the total complex differential to f ^ g + n ^
g+n ^ m yields zero. Using the formulas for this differential derived above (when
computed degree two Deligne cohomology) we find that we must have

0 = fβdgβ − fαdgα+nαβdgβ

0 = −nβγgγ + nαγgγ − nαβgβ+nαβmβγ

0 = nβγmγδ − nαγmγδ + nαβmβδ − nαβmβγ .

It is easy to check that these follow from the cocycle conditions for (f, n) and (g,m)
above.There are some sign errors!

Perhaps in the earlier
formulas.

Finally let us check that the product of a coboundary and a cocycle is a

coboundary. If (f, n) is a coboundary this means there exists a Čech zero-cycle
with coefficients in the constant sheaf Z, denote it by a, such that

fα = aα nαβ = aβ − aα.
We thus obtain, using that (g,m) is a cocycle,

(f ^ g)α = fαdgα = aαdgα

(n ^ g)αβ = aβgβ − aαgβ = aβgβ − aαgα − aαmαβ

(n ^ m)αβγ = nαβmβγ = aβmβγ − aαmβγ .

One checks (again using the formulas from the computation of degree two Deligne
cohomology) that this defines a coboundary which is the total differential of (−aαgα,−aαmαβ).

Again, up to some pesky
signs.

Recalling the interpretation of degree one and two Deligne cohomologies as
smooth U(1)-valued functions and line bundles with connection up to isomorphism,
we see that the product yields, for any two smooth U(1)-valued functions, a line
bundle with connection. This line bundle can be described explicitly using the Čech
description as above: the transition functions are given data (f, n) and (g,m) defin-
ing U(1)-functions, the line bundle has transition functions nαβgβ : Uα∩Uβ → U(1)
and connection one-forms 2πifαdgα on Uα.Go over this carefully,

something looks funny
We see that the product gives us a systematic procedure for constructing higher

degree classes in Deligne cohomology. The geometric interpretation of these classes
is somewhat unclear, though. As we will see later, the objects that are classified by
higher degree classes behave higher-categorically, which become quite difficult to
understand concretely. For instance, U(1)-functions form a set, line bundles form
a 1-category, gerbes form a 2-category, etc.

1.4. Fiber integration.

1.5. Application: families of Dirac operators. Differential cohomology arises
naturally in index theory in various forms. We will discuss degree one and degree
two classes that naturally arise when considering families of Dirac operators.

The geometric setup is the following. Let π : M → B be a smooth family of spin
manifolds of dimension n. Denote by T (M/B) → M the vertical tangent bundle
of π, i.e. the bundle of vectors in the kernel of the pushforward π∗. The spin
structure on the fibers Mb is the data of a spin structure on T (M/B). The usual
representation theory of Clifford algebras yields a spinor bundle S(M/B) → M
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associated to the Clifford bundle C(T (M/B)). If n = 2k, i.e. we have an even-
dimensional family of manifolds, then the spinor bundle is naturally Z/2-graded.
In the odd-dimensional case, on the other hand, the spinor bundle is ungraded, and
we manually define S(M/B) to be the Z/2-graded bundle given as a direct sum
of two copies of the ungraded spinor bundle. Either way we obtain a Z/2-graded
vector bundle that we will denote by S(M/B). The Clifford multiplication and the
Levi-Civita connection on T (M/B) yield a first-order odd differential operator

D± : S±(M/B)→ S∓(M/B)

that squares to a generalized Laplacian. Here again in the odd case we have no
grading so we take the ungraded Dirac operator and view it as a map between the
two copies of the spinor bundle. We can twist all the constructions in this section
by an auxillary vector bundle with metric and connection on M , though we will
refrain from doing so here.

For n odd there is a natural degree one Deligne cocycle on the base B that
patches together to yield a U(1) function on B. We construct it as follows. Denote
by ω the volume form along the fibers of π and normalize it such that c(ω)2 = 1.
Notice that Clifford multiplication by ω commutes with the Dirac operator and is
an odd operator whence we obtain an even operator

c(ω)D : S±(M/B)→ S±(M/B)

such that (c(ω)D)2 = D2. As such, this operator has a discrete spectrum unbounded
positively and negatively.

We define an open cover {Vα}α∈R of B by

Vα = {b ∈ B | α /∈ spec+(c(ω)bDb)}.
i.e. Vα is the subset of b ∈ B over which α ∈ R is not an eigenvalue of c(ω)bDb.
Straightforward functional analytic arguments show that this does indeed give us
an open cover. We define ηα : Vα → R to be the zeta-function regularization of
the difference of the number of eigenvalues (of c(ω)bDb) below and above α. It is
a nontrivial result (say using heat kernel or pseudodifferential techniques) to show
that this does in fact give us a smooth real-valued function. That n is odd is crucial
here—for instance in the heat kernel approach I believe it is needed to guarantee
the regularity of the zeta-function regularization at z = 0. Moreover for α < β we
have the relation

1

2
ηβ(b) =

1

2
ηα(b)− |{λ ∈ spec+(c(ω)bDb) | α < λ < β}|

over Vα∩Vβ . The second term on the right is of course an integer nαβ , which yields

our Čech-de Rham 1-cocycle (ηα, nαβ), which glues to yield a function τD : B →
U(1) that on Vα is given

τD(b) = exp(πiηα(b)).

In the even-dimensional case one there is a natural degree two Čech-de Rham
cocycle known as the determinant line bundle L → B.2 The construction of the
Hermitian line bundle for families of Riemann surfaces is due to Quillen, and in full
generality to Bismut and Freed, who additionally constructed a unitary connection.
Heuristically the determinant line bundle is given as (det kerD+)∨⊗det kerD−. Of

2In fact this cocycle can be written down in the odd-dimensional case as well, though the
resulting geometric line bundle is relatively trivial, c.f. Freed/Moore.
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course, kerD± need not be smooth vector bundles (the kernel may jump rank), so
this is at best an intuitive picture.

Define the infinite-rank superbundle H = π∗S(M/B) → B as having fiber over
b the space Γ(Mb, S(M/B)). Then D becomes an odd endomorphism of H. We
define an open cover {Uα}α≥0 of B by

Uα = {b ∈ B | α /∈ spec+(D−b D
+
b )}

and superbundles H[0, α)→ Uα consisting of the sum of the eigenspaces of D2 for
eigenvalue less than α. Functional analytic arguments show that this is indeed a
finite-rank vector bundle. Suppose now that we are given a connection on the family
π : M → B. Then these superbundles naturally obtain metrics and connections
(from the spin connection and the connection on the family). Define over Uα,

detH[0, α) := (detH+[0, α))∨ ⊗ detH−[0, α)

which is again naturally equipped with a metric and connection. Over the overlap
Uα ∩ Uβ for α < β one finds that

detH[0, β) ∼= detH[0, α)⊗ detH(α, β).

The bundle detH(α, β)→ Uα ∩Uβ is trivial as it has a nonvanishing global section
detD(α, β) (since D is of course invertible away from its kernel). Thus these line
bundles glue to the determinant line bundle L → B along these isomorphisms. It
is worth remarking that when D has index zero there is a natural global section
detD ∈ Γ(B,L) that can be interpreted as the determinant of the Dirac operator
D. This is important in the Lagrangian formulation of anomalies for quantum field
theories with both bosons and fermions.

Unfortunately the metrics and connections on the bundles detH[0, α) do not glue
to a metric and connection on L. There is some twisting required by zeta-regularized
functions—the construction of the metric is due to Quillen and the connection to
Bismut and Freed. In fact there is a small miracle that the curvature of this
connection is the two-form component of the characteristic class appearing in the
families index theorem of Atiyah and Singer. This raises the question as to whether
the higher degree components have index-theoretic geometric interpretations. In
degree 3 at least there is a construction of a gerbe due to Lott that we will outline
below. I believe that the higher degree Deligne cohomology classes are constructed
in Bunke’s book, though I haven’t looked in detail.

Example 3 (Sigma model). Let Σ be a compact surface with spin structure and
let X be a Riemannian manifold. Consider a smooth map B → Maps(Σ, X), which
is formally the data of a smooth map

M := Σ×B ev−→ X.

Notice that we work over B since Maps(Σ, X) is infinite-dimensional. We have a
diagram

M = Σ×B X

B

ev

π

Consider the twist of the vertical spinor bundle on M by ev∗ TX. Bunke has shown
that if X has a string structure then the Deligne cocycle for the determinant line
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bundle L can be expressed as the transgression of the first differential fractional
Pontryagin class of TX:3

ĉ1(L) = −
∫

Σ×B/B
ev∗

(
p̂1

2
(TX)

)
Moreover there is a canonical flat unit-norm trivialization of L determined by the
string structure. This is an example of an anomaly cancellation result as well as
the power of the formalism of differential cohomology.

2. Gerbes

The notion of a gerbe has been around for quite a while now and there are various
approaches to defining them in various contexts. We will discuss a very concrete
geometric model due to Murray.

2.1. Bundle gerbes. Just as a line bundle with connection on X is given by a
map L → X of a certain form together with additional data, a bundle gerbe is
defined as follows.

Definition 4. A bundle gerbe G with connective structure on X is the following
data:

(1) a surjective submersion U → X;
(2) a line bundle L → U [2], where U [k] is the kth fibered product of U with

itself over X;
(3) a connection ∇L on L with curvature F ∈ Ω2(U [2]);
(4) an isomorphism

µ : π∗01L⊗ π∗12L
∼−→ π∗02L

of line bundles with connection over U [3] satisfying an “associativity” co-
herence condition

π∗01L⊗ π∗12L⊗ π∗23L π∗02L⊗ π∗23L

π∗01L⊗ π∗13L π∗03L

π∗
012µ⊗id

id⊗π∗
123µ π∗

023µ

π∗
013µ

over U [4];
(5) a two-form B ∈ Ω2(U) called the curving such that π∗0B − π∗1B = F .

This is a lot of data to keep track of, so let’s look at some examples. The first is
the trivial bundle gerbe.

Example 5 (Trivial bundle gerbe). Recall that given a 1-form on X we can con-
struct a topologically trivial line bundle with connection. Now suppose we are
instead given a 2-form B on X. Define a bundle gerbe by taking the surjective sub-
mersion to be id : X → X and the line bundle over X [2] = X to be the trivial line
bundle X ×C→ X with trivial connection. The isomorphism µ is just the identity
map between trivial bundles, which of course satisfies the associativity condition.
Since π0 = π1 the condition on B, π∗0B − π∗1B = 0 is trivially satisfied.

3Really it’s the relative Pfaffian bundle. See Bunke’s paper for details.
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One might say that a bundle gerbe is trivializable if it is isomorphic to a trivial
bundle. However, morphisms of bundle gerbes are somewhat subtle (in fact, bundle
gerbes naturally form a 2-category), so we’ll refrain from discussing maps for now.

Before we explore more examples, let’s sketch why this definition of gerbe matches
up with the Deligne description above. Given a sufficiently fine open cover of X
and a Deligne 3-cocycle, i.e. the data of (Bα, Aαβ , fαβγ , nαβγε) in the kernel of the
map above, let us construct a bundle gerbe with connective structure. Denote by
{Uα} the given open cover and let U =

∐
α Uα with the obvious surjective submer-

sion to X. Define L → U [2] to be the trivial line bundle with connection 2πiAαβ
over Uαβ = Uα ∩ Uβ . Then −2πiBα ∈ Ω2(Uα) is the curving of the gerbe, as the
curvature of L over Uαβ is 2πidAαβ and the cocycle condition requires that the
difference in curvings over double overlaps is precisely the curvature of L over that
overlap.

Next we require an isomorphism of line bundles with connection

Lαβ ⊗ L−1
αγ ⊗ Lβγ

µ−→ Uαβγ × C

over Uαβγ for any α, β, γ. We use fαβγ ∈ Ω0(Uαβγ): in particular the triple tensor
product on the left is trivial (since L is), whence we can define µ as multiplication
by exp(2πifαβγ) : Uαβγ → U(1). It remains to check that µ is compatible with the
connections. Take sections sαβ , sαγ , sβγ of the line bundles on the right and denote
by tαβγ the section of Uαβγ × C that is the image under µ:

tαβγ = e2πifαβγsαβ ⊗ s−1
αγ ⊗ sβγ .

Then for µ to be compatible with the connections we must have that

0 = ∇(e2πifαβγsαβ ⊗ s−1
αγ ⊗ sβγ)

since the connection on the trivial bundle is trivial. Differentiating, we find

2πie2πifαβγdfαβγsαβ⊗s−1
αγ⊗sβγ+2πie2πifαβγ (Aαβ−Aαγ+Aβγ)sαβ⊗s−1

αγ⊗sβγ = 0,

which is exactly the cocycle condition on Aαβ . Finally, the “associativity” of the

isomorphism µ on U [4] follows from the cocycle condition on fαβγ .
We omit the verification of the converse: that a bundle gerbe with connective

structure determines a Deligne 3-cocycle. We also will refrain for now from dis-
cussing isomorphism classes of bundle gerbes.

Remark 6. Let (Y, L, µ) be a bundle gerbe (we’ll ignore the connective structure)
on X. The bundle gerbe determines a Lie groupoid G in the following manner.
The objects are points y ∈ Y , and the set of morphisms between y1, y2 is empty if
π(y1) 6= π(y2) in X and the vector space L(y1,y2) otherwise. Now let z1 : y1 → y2,
z2 : y2 → y3 be two morphisms. The composition z2 ◦ z1 : y1 → y3 is defined by the
morphism µ—recall that we have

µ : π∗12L⊗ π∗23L
∼−→ π∗13L

on Y [3] which induces a map µ(y1,y2,y3) : L(y1,y2) ⊗ L(y2,y3) → L(y1,y3). Thus z1, z2

determine a morphism z3 ∈ L(y1,y3) which we define to be the composition of z1

and z2. Composition is associative by the associativity condition on µ (over Y [4]).
Finally we check that morphisms are invertible: given a map z : y1 → y2, maps
w : y2 → y1 are in bijective correspondence via µ with maps y1 → y1. Hence there
is a unique map w : y2 → y1 such that w ◦ z = idy1 (and similarly for the other
composition).
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In fact, this allows us to think of a bundle gerbe as the total space of a (bundle
associated to) a BU(1)-principal 2-bundle. Here BU(1) is thought of as a 2-group.
Perhaps we can discuss these notions at a later date.

2.2. Examples. We discuss a few examples of bundles gerbes arising naturally
from geometry.

Example 7 (Basic gerbe). Let G be a compact, simple, simply-connected Lie
group. There is a gerbe on G with curvature 3-form naturally built from the
Maurer-Cartan form θ and the (appropriately normalized) invariant bilinear form
〈−.−〉 on the Lie algebra g of G. Recall that the Maurer-Cartan form θ ∈ Ω1(G; g)
is the left-invariant g-valued one-form on G defined at the identity TeG as eating a
tangent vector and returning it as an element of the Lie algebra. Define, now,

η = λG〈θ, [θ ∧ θ]〉 ∈ Ω3(G).

Here [θ∧ θ] is a combination of the wedge product of forms and the commutator of
Lie algebra elements and λ ∈ R is a constant chosen such that η defines an integral
cohomology class (notice that this constant will depend on our normalization of
bilinear form) [η] ∈ H3(G;Z) ∼= Z and is the (positive) generator.

The basic gerbe has many different constructions, some of them related to the
lifting gerbe we will discuss later. There is a relatively explicit construction for the
case of SU(d + 1) due to Gawedzki and Ries that was later generalized to G as
above by Meinrenken. We will follow the exposition of Waldorf and Schweigert.

To form a surjective submersion (in fact an open cover) over G we use the fact
that the fundamental alcove A in g (or equivalently g∨) is in bijection with the
conjugacy classes of G. Write q : G→ A for the quotient map. Writing µ0, . . . , µd
for the vertices of A with µ0 = 0, define Vj = q−1(Aj) where Aj is the open star
at µj . The Vj yield an open cover of G. To construct line bundles on each Vj , finish

Example 8 (Lott’s index gerbe). Given a smooth family of (generalized) Dirac
operators D on a family of Z/2Z-graded complex vector bundles over a family of
even-dimensional closed manifolds E →M → B one obtains a complex line bundle
with Hermitian metric on the parameter space B, denoted

det(D, π∗E)→ B,

known as the determinant line bundle of the family (constructed originally by
Quillen). The name comes from the case when indD = 0, for which there is a
section of this line bundle which can be interpreted as the determinant of the fam-
ily D. There is moreover a connection compatible with the Hermitian metric on the
determinant line bundle, due to Bismut and Freed. The curvature of this connec-
tion happens to be the degree 2 component of an inhomogeneous form appearing in
the transgression formula for the local Atiyah-Singer family index theorem (due to
Bismut). It is thus natural to ask whether the higher degree terms also correspond
to geometric objects on B.

Lott, in a 2001 paper, given similar data as above in the odd-dimensional case
constructs a bundle gerbe with connective structure over B. Whereas the Bismut-
Freed connection one-form arises naturally from the determinant, here the relevant
quantity will be the eta invariant. I am not very familiar with the relevant odd-
dimensional index theory so I will just give a rough outline of the construction.
We begin with the geometric setup. Let the fibers of π : M → B be closed odd-
dimensional (oriented) manifolds. Suppose we have a spin structure on the vertical
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tangent bundle and let E be a complex vector bundle (with metric and compatible
connection) over M which is a twist of the spinor bundle by an auxilliary complex
vector bundle (with metric and connection). This data yields a smooth family
of (generalized) Dirac operators that we will denote (D0)b∈B.We’re in odd

dimensions. . . what is this?
Define π∗E to be

the infinite-rank vector bundle over B whose fiber at b ∈ B is the space of smooth
sections Γ(Mb, E|Mb

). If we choose a connection (horizontal distribution) onM → B
we obtain a connection on π∗E .

To define the index gerbe we take our surjective submersion U → B an open
cover of B. This open cover is chosen such that D0 can be deformed slightly

Dα = D0 + hα(D0)

via hα ∈ C∞c (R) such that Dα is invertible over Uα. Taking U = tαUα, we now
wish to provide line bundles with connection on nonempty double overlaps Uαβ .
To do this we notice that the (pseudo)differential operator

Dβ
|Dβ |

− Dα
|Dα|

has, over any point b ∈ B, only 0 and ±2 as its eigenvalues. Write pr± for the
projections to the ±2 eigenspaces of π∗E . It turns out that the images of these
projections are finite-rank vector bundles over Uαβ . We can thus define the complex
line bundle over Uαβ

Lαβ = Λtop(pr+π∗E)⊗ Λtop(pr−π∗E)−1.

This line bundle inherits a connection from the connection on π∗E (first induce
a connection on the projection as pr ◦ ∇ ◦ pr and then take appropriate exterior
powers). It remains to construct the isomorphism µ, which is equivalent to giving a
trivialization of Lβγ⊗L−1

αγ ⊗Lαβ over Uαβγ . There is an obvious such trivialization
arising from the following observation. Over the open Uαβγ we have

pr+ = prα=−,β=+ = prα=−,β=+,γ=+ ⊕ prα=−,β=+,γ=−.

In other words, the eigenspace on which Dβ/|Dβ | acts as +1 and Dα/|Dα| acts as
−1 splits into a direct sum of spaces where additionally Dγ/|Dγ | acts as ±1. This
yields a decomposition

Lαβ ∼= ΛtopH−++ ⊗ Λtop(H−+−)⊗ Λtop(H+−+)−1 ⊗ Λtop(H+−−)−1

whereHαβγ is the eigenspace on which the operators act by multiplication according
to the given sign. A similar decomposition holds for Lβγ and Lαγ , from which it
is easy to see that the triple required triple tensor product is canonically trivial.
Moreover one can check the associativity condition required on quadruple overlaps.

To complete the construction of the index gerbe it remains to specify 2-forms Bα
over each Uα such that the difference Bβ −Bα on Uαβ is equal to the curvature of
the connection on Lαβ . This is where the eta invariant appears explicitly. Introduce
a formal odd variable σ and define the rescaled Bismut superconnection

Aα,s = sσD +∇π∗E +
1

4s
σc(T )

on π∗E restricted to Uα. Here c(T ) is Clifford multiplication by the curvature of
the connection on M → B. If we write trσ for the operator that projects onto
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coefficients of σ and then takes the trace, one can use methods from the proof of
the local family index theorem to show that

trσ

(
dAα,s
ds

e−A
2
α,s

)
has a nice enough asymptotic expansion for s → 0 such that it makes sense to
define

η̃α = f.p.t→0

∫ ∞
t

trσ

(
dAα,s
ds

e−A
2
α,s

)
ds

an even-degree inhomogeneous differential form on Uα. Here we are taking a suit-
ably defined finite part of an otherwise overall divergent quantity (what BGV call
a renormalized limit). After some detailed computations, one find that (up to some
slightly finicky normalizations)

(η̃β − η̃α)[2] = Fαβ ,

where Fαβ is the curvature of Lαβ and [2] represents taking the two-form com-
ponent. We conclude that the degree two components of the eta-forms yield the
curving for Lott’s index gerbe, which completes the outline of the construction (up
to checking that the choices made in the construction are immaterial). The curva-
ture of this gerbe, by the index theorem, turns out be the three-form component of
the Chern character of the family index bundle.

The following example is more naturally defined as a principal bundle gerbe, so
we will not go into as much detail, since we have been focusing on gerbes defined
by line bundles.

Example 9 (Lifting bundle gerbe). A certain class of degree 3 cohomology classes,
and hence gerbes, arise naturally as obstructions to lifting the structure group of a
principal bundle along a central extension. In particular let

1→ U(1)→ Ĝ
t−→ G→ 1

be a central extension, i.e. U(1) ⊂ Z(Ĝ). Suppose we are given a principalG-bundle

P → X. A lifting of structure group to Ĝ is the data of a principal Ĝ-bundle P̂ → X
together with a bundle map φ : P̂ → P such that

φ(p̂ · ĝ) = φ(p̂) · t(ĝ).

The existence of a such a lift is given by a class in H2(X,U(1)) as can be checked
via Čech methods. Fix a good open cover U and denote by gαβ : Uαβ → G the
transition functions of P . As the opens Uαβ are contractible, the gαβ can be lifted

(the U(1)-bundle Ĝ→ G is trivial over Uαβ so we need only choose a section) to Ĝ,

call them ĝαβ : Uαβ → Ĝ. Notice that although gαβ satisfies the cocycle condition,
the lift ĝαβ need not. Define

εαβγ = ĝβγ ĝ
−1
αγ ĝαβ

and note that t(εαβγ) = 1 whence εαβγ is a U(1)-valued 2-cochain. A simple
computation reveals that

(δε)αβγδ = εβγδε
−1
αγδεαβδε

−1
αβγ

= 1.
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whence ε defines a Čech cocycle for a class in H2(X;U(1)). Changing our choice

of lifts ĝαβ to ĝ′αβ is harmless, as it changes this cocycle by a coboundary: we can

write ĝ′αβ = ĝαβhαβ for hαβ : Uαβ → U(1). Then, since U(1) ⊂ Z(Ĝ),

ε′αβγ = εαβγhβγh
−1
αγhαβ

which differs from εαβγ by the coboundary δh. We conclude that the bundle P lifts

to P̂ if ε is trivial. Indeed, it is easy to see that we may as well assume ε = 1,
whence the ĝαβ define a principal Ĝ-bundle constructed as a quotient of the disjoint

union
∐
α Uα×Ĝ. The morphism t : Ĝ→ G yields a map

∐
α Uα×Ĝ→

∐
α Uα×G

that descends to quotients because t(ĝαβ) = gαβ .
Notice that from the short exact sequence of sheaves of abelian groups

0→ Z ↪→ Ω0 exp(2πi·)−−−−−−→ U(1)→ 0

(where U(1) means the sheaf of U(1)-valued functions) and the fact that Ω0 is fine
(admits partitions of unity) and thus has no higher cohomology, we deduce that
H2(X;U(1)) ∼= H3(X;Z). Let us construct a bundle gerbe corresponding to the
class ε (really we will be constructing a principal bundle gerbe). The surjective
submersion is given by the map π : P → X. To obtain a U(1)-bundle Q over P [2]

we consider Ĝ → G as a principal U(1)-bundle and pull it back along the map
g : P [2] → G defined by

p · g(p, p′) = p′,

i.e. we have

Q Ĝ

P [2] G

t

g

The isomorphism
µ : π∗01Q⊗ π∗12Q

∼−→ π∗02Q

is the data ofFinish this

2.3. Categorical aspects.

References


	1. Deligne cohomology
	1.1. Differential cohomology
	1.2. The Deligne model
	1.3. Ring structure
	1.4. Fiber integration
	1.5. Application: families of Dirac operators

	2. Gerbes
	2.1. Bundle gerbes
	2.2. Examples
	2.3. Categorical aspects

	References

