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Throughout, we will take (M, g) a compact oriented Riemannian manifold.
We have seen that the de Rham complex Ω•(M) contains more information

than the de Rham cohomology H•dRM . In particular, when M is 1-connected, the
complex picks up rational homotopy theoretic data (see [DGMS75]) that is lost
after passing to cohomology (unless the manifold is “formal”). There is a fix, as
described by Sean: if we consider H•dRM as an A∞-algebra in the natural manner,
we can recover the rational homotopy theory of M . Let us see how this fits into
our story about Morse theory. We will be somewhat sketchy on the Morse theory,
but the next talk will fill these details in. For the details, see [Abo09].

Recall that the Morse complex CM•(M,f) of a Morse(-Smale) function f com-
putes the de Rham cohomology of M . Though this is a classical statement, Witten
in [Wit82] suggested a different proof that interpolates between the de Rham and
Morse complexes. Fix some real parameter ~ > 0 and and consider the deformed
de Rham complex,

Ω•(M,f, ~) = (Ω•(M), df,~)

df,~ = exp(−f/~)~d exp(f/~) = ~d+ df ∧ .
The “interpolation” is to be considered as follows: for ~ → ∞, the first term
in the deformed differential dominates, yielding the usual de Rham differential.
More precisely, multiplication by ~ exp(f/~) is an isomorphism of chain complexes
Ω•(M,f, ~)→ Ω•(M). On the other hand, Witten showed that there is a subcom-
plex of “small-eigenvalue” forms

Ω•sm(M,f, ~) ⊂ Ω•(M,f, ~)

that is quasi-isomorphic to the Morse complex under a map1

φ(~) : CM•(M,f) Ω•(M,f, ~)'

taking a critical point to the corresponding small eigenform with support near that
point. This gives us a chain of quasi-isomorphisms

CM•(M,f) Ω•sm(M,f, ~) Ω•(M,f, ~) Ω•(M)' ' ×~ef/~

inducing isomorphisms on cohomology,

H•(CM•(M,f)) ∼= H•dRM,

as desired.

Date: Spring 2017.
1This is not quite true. This map is just an isomorphism of graded vector spaces that computes

the same cohomology. This is a subtle point that I don’t really understand, and will persist in
the statement of the main theorem below. Understanding this is probably a job for one of the

analysts here.
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Now it is natural to ask whether Morse theory can also be refined using some type
of A∞-structure in order to detect rational homotopy theory, and if so, whether this
isomorphism can be promoted to an isomorphism of such A∞-structures. Naively,
we would like to say that Morse cohomology can be given the structure of an A∞-
algebra, and that Witten’s arguments can be extended to show that the higher
multiplications on the Morse and de Rham sides agree to leading order in ~.

Unfortunately, there is no A∞-structure on Morse cohomology. Recall that Sean
constructed the A∞-algebra structure on the de Rham cohomology by Kadeishvili’s
algorithm, which used the multiplicative structure on Ω•(M) as well as a bit of
Hodge theory (see, for instance, [Mer98]). The same algorithm clearly will not
work for Morse cohomology – it is not the cohomology of a dga, and moreover does
not naturally split-include into the Morse complex. This is a hint that perhaps
“A∞-algebra” is not the correct structure to be looking for.

Fukaya in [Fuk93] noticed that the correct A∞-structure on Morse theory is that
of an A∞-precategory. In other words, working with chain complexes is not enough
to find higher multiplications – we are forced to “categorify” and replace higher
multiplications with higher compositions.2 With this in mind, let us present the
definition of an A∞-precategory (due to Kontsevich and Soibelman in [KS00]) and
then give the examples which will concern us.

Definition 1. An A∞-precategory A (over R) consists of

(1) a class of objects Ob(A),
(2) for each n > 2, a distinguished subset of n-tuples of “transversal sequences”

Obntr(A) ⊂ Ob(A),

(3) for each (X0, X1) ∈ Ob2
tr(A), a Z-graded vector space

HomA(X0, X1),

(4) for each (X0, . . . , Xd) ∈ Obd+1
tr (A), a map of graded vector spaces

md : HomA(Xd−1, Xd)⊗ · · · ⊗HomA(X0, X1)→ HomA(X0, Xd)[2− d],

such that every subsequence of a transversal sequence is transversal and the maps
md satisfy the A∞-relations: for each d > 1,∑

(−1)r+stmr+1+t(id
⊗r ⊗ms ⊗ id⊗t) = 0

where the sum runs over all decompositions d = r + s+ t where s > 1.

For some practice with the A∞-relations it is worth working out the following.

Exercise 2. Check that the A∞-relation for d = 1 enforces m1 ◦m1 = 0, implying
that each hom-space (when defined) is a chain complex (HomA(X0, X1),m1). The
A∞-relation for d = 2 enforces that m1 is a derivation over m2:

m1 ◦m2 −m2(m1 ⊗ id)−m2(id⊗m1) = 0

as maps HomA(X2, X1)⊗HomA(X1, X0)→ HomA(X2, X0)[1].3

Exercise 3. Define an A∞-category.

2As a simple example of this philosophy, verify that an R-linear category – i.e. a category

where the hom-sets are R-vector spaces and the composition ◦ is a bilinear map – with one object

is precisely the data of an R-algebra.
3I am not being particularly careful with signs or grading shifts here. I leave that as an exercise.
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Notice that an A∞-category with one object is precisely an A∞-algebra. It is in
this sense that we have categorified the notion of an A∞-algebra. For comparison,
check that a dg-category with one object is a dga.

We now discuss the (A∞-pre)categorifications of the de Rham and Morse com-
plexes.

Definition 4. The de Rham category dR(M, ~) is the dg-category with objects
the smooth functions Ob(dR(M, ~)) = C∞(M) and hom-spaces

HomdR(M,~)(f, g) = (Ω•(M), dg−f,~ = ~d+ d(g − f)∧).

Composition of morphisms is given by wedge product,

HomdR(M,~)(f, g)⊗HomdR(M,~)(g, h) HomdR(M,~)(f, h)∧

and is associative by the associativity of the wedge product. We take the A∞-
categorical structure to be the trivial one; here m1 is the deformed differential on
each hom-space, m2 is the wedge product above, and all higher multiplications are
taken to be zero: mk = 0 for k > 3. Notice that HomdR(M,~)(f, f) is the usual de
Rham complex, and the identity map id : f → f is the constant zero-form 1.

Exercise 5. First make sense of the wedge product of forms as composition maps
and then check that they commute with the differentials (i.e. are maps of chain
complexes, as is required to form a dg-category). The fact that we are considering
differences f − g is crucial here.

Exercise 6. Check that the A∞-structure on any dg-category (as described in this
case) satisfies the A∞ relations, by dint of the composition being associative.

Next up is the Morse category, which we sketch the definition of.

Definition 7. The Morse A∞-precategory Morse(M) has objects the smooth func-
tions Ob(Morse(M)) = C∞(M) and transversal sequences

~f = (f0, . . . , fn) ∈ Obn+1
tr (Morse(M))

those sequences for which fij = fj − fi is Morse for each i 6= j. The hom-spaces
are given

HomMorse(M)(f, g) = CM•(M, g − f)

The first multiplication is simply defined to be the Morse differential m1 = δ. We
will not define the higher multiplications mk (k > 2) here, as Peng will describe
them in detail later. Roughly speaking, they are constructed analogously to the
construction of m1 = δ (using gradient flows), replacing critical points and functions
with sequences of critical points and (transverse) functions.

It is important to note, in particular, that the construction of the higher multi-
plications on the Morse category are not coming from manipulations that are just
algebraic in nature (as the construction of the A∞-algebra structure on H•dR(M)
was). Instead, the mk are constructed from geometric data about gradient flows
on M .

With these definitions in mind, we can now state Fukaya’s conjecture.4

4There is a similar statement in the work [KS00] of Kontsevich and Soibelman, though the de
Rham category there is defined differently, avoiding the Witten deformation altogether. It would

be useful to understand the precise relation with the ideas here.
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Theorem 8. There is an equivalence of A∞-precategories

Morse(M) dR(M, ~).'

Since the category on the right is equivalent to the rather simple category dR(M)
(just the data of Ω•(M), we conclude that Morse theory does indeed contain the
data of rational homotopy theory: however, instead of finding it in an A∞-algebra
structure, we find it in an A∞-categorical structure. The goal of this reading group
is to understand the proof of this statement, which reduces fairly straightforwardly
to an analytic result in [CLM14] showing that mMorse

k ≈ mdR
k to leading order

in ~ using the WKB approximation. Here mdR
k are the higher compositions on

the subcategory of small eigenforms dRsm(M, ~) ↪→ dR(M, ~) induced from the
dg-category structure on dR(M, ~) (Kontsevich and Soibelman call this procedure
“homological perturbation” in [KS00]).

Proof idea. Following Witten, we define an auxiliary A∞-category of “small” eigen-
forms. Define dRsm(M, ~) to be the subcategory of dR(M, ~) with the same objects
but with morphism complexes

HomdRsm(M,~)(f, g) ↪→ HomdR(M,~)(f, g)

the subcomplex of forms spanned by those with eigenvalues small enough (how
small depends on ~, f, g and the metric on M – we won’t be precise here). This
subcategory is actually not a category – the naive composition given by inclusion,
wedge product, and then spectral projection,

Homsm(f2 − f1)⊗Homsm(f1 − f0) Hom(f2 − f1)⊗Hom(f1 − f0)

Hom(f2 − f0)

Homsm(f2 − f0)

(ι,ι)

∧

P

which we shall call m2, is not associative. The obvious guess, then, is that the
category of small eigenforms is an A∞-category. Indeed, defining the differential
m1 to be inclusion followed by the differential in dR(M, ~) followed by projection,
it is easy to see that m1 is a derivation over m2.

How do we define the higher compositions? We will use the fact that the hom-
complexes in the small eigenform category are deformation retracts of the hom-
complexes of the full de Rham category. The argument is exactly the argument in
the proof of the Hodge decomposition: if G is the Green’s operator for the Witten
Laplacian ∆ (associated to the function f01 = f1 − f0) defined to be zero on small
eigenforms (multiplied by id−P , say) then H = d∗G is a homotopy from id to P
on the full deformed de Rham complex:

dH +Hd = id−P.

Now we define

m3 : Homsm(f3 − f2)⊗Homsm(f2 − f1)⊗Homsm(f1 − f0)→ Homsm(f3 − f0)[−1]
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by

m3(α23, α21, α10) = P03 (H13(α23 ∧ α12) ∧ α01 + α23 ∧H02(α12 ∧ α01)) .

It is a messy exercise to check that with this definition the d = 3 A∞-relation is
satisfied.

To see how to define the higher multiplications, notice that we can represent the
m2 and m3 by 2- and 3− trees – see section 2.3 of [CLM14], for instance. We sum
over all (topological types) of k-trees

mk =
∑
T

mT
k

where each mT
k is defined along the tree as follows:

(a) applying the inclusion ιi(i+1) at each incoming (semi-infinite) edge;
(b) applying the wedge product at each interior vertex;
(c) applying the homotopy Hij to each internal edge labelled ij;
(d) applying the projection P0k to the outgoing (semi-infinite) edge.

Of course, one has to check that the resulting multiplications satisfy the A∞-
relations. One can also obtain this A∞-structure more abstractly via the homolog-
ical perturbation lemma of [KS00].

Now we have an A∞-category dRsm(M, ~) that is A∞-equivalent to dR(M, ~), as
it is a deformation retract. Since the small eigenform hom-complexes are identified
(as graded vector spaces) with the Morse hom-complexes, it now suffices to show
that the small eigenform and the Morse higher multiplications agree to leading
order in ~.5 Understanding this is our main goal. �

For further reading, here are a few questions that might be worth investigating:

(a) Show rigorously that Witten’s map between the Morse complex and the small
eigenform complex – which is a priori only a map of graded vector spaces –
“induces” an isomorphism on cohomology. Argue similarly for the equivalence
of A∞-categories.

(b) It is known that every A∞-category is A∞-equivalent to a dg-category. This
is effectively a “straightening” theorem. Is there a procedure for constructing
that dg-category, and if so, what is it for the Morse category and what is the
relation to the de Rham category?

(c) Is there a notion of an A∞-nerve? In particular, is there a space we can associate
these categories? What will that space be or what will it know about the
homotopy type of M? For instance, what is the totalization of the cosimplicial
object obtained from Ω•(M) via Dold-Kan?

(d) Compare the statement (and methods) of the theorem here to the theorem
proved in [KS00] by Kontsevich and Soibelman.
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