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These are notes from John Francis’ “Factorization homology” course taught dur-
ing the Fall quarter of the 2017 year at Northwestern. Errors and inaccuracies are,
as usual, due to the notetaker(s).

1. What is factorization homology? [09/20/17]

1.1. Introduction. What is factorization homology? Well, if it were an animal, I
could describe it in two ways: distribution and phylogeny. More specifially, we will
first see how factorization homology is distributed over the face of the planet. Then
we will describe how it evolved from single-celled organisms, i.e. how you might
come up with it yourself.

For the moment you can think of factorization homology as a sort of

generalized (co)sheaf homology.

Notice that this phrase can be hyphenated in two different ways. In one sense it is
a generalization of the ideas of sheaf cohomology, and in the other it is a homology
theory for generalized sheaves (or sheaf-like objects). In particular, factorization
homology is a machine that takes two inputs: a geometry M and an algebraic
object A. The output is ∫

M

A,

the factorization homology of with coefficients in A.

1.2. Examples. Let’s look at the first description: what are some examples of
factorization homology that appear naturally in mathematics?

(1) Homology. Here M is a topological space and A is an abelian group. In
this case the output is a chain complex∫

M

A ' H•(M,A),

quasiisomorphic to singular homology with coefficients in A.John: What is a theorem
you can’t prove without

ordinary homology? (2) Hochschild homology. Here M is a one-dimensional manifold – let’s take
in particular M = S1 – and A will be an associative algebra. In this case∫

S1

A ' HH•A,

the Hochschild homology of A. You might be less familiar with this alge-
braic object than ordinary homology. It’s importance comes from how
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it underlies trace methods in algebra (e.g. characteristic 0 representa-
tions of finite groups). Hochschild homology is a recipient of “the uni-
versal trace” and hence an important part of associative algebra. Note
that HH0A = A/[A,A].

(3) Conformal field theory. This is in some sense the real starting point
for the ideas we will develop in this class. Here M is a smooth complete
etc. algebraic curve over C and A is a vertex algebra. In this case the
output

∫
M
A was constructed by Beilinson and Drinfeld, and is known as

chiral homology of M with coefficients in A. It is a chain complex, with
H0(

∫
M
A) being the space of conformal blocks of the conformal field theory.

(4) Algebraic curves over Fq. Here M is an algebraic curve over Fq and G
is a connected algebraic group over Fq. In this case

∫
M
G is known as the

Beilinson-Drinfeld Grassmannian and is a stack. One interesting property
that it has is that

H•

(∫
M

G, Q̄`
)
' H•(BunG(M), Q̄`),

where here we are taking `-adic cohomology. Although the Beilinson-
Drinfeld Grassmannian is more complicated than the stack of principal
G-bundles, it is more easily manipulated. We note that the equivalence
above is a form of nonabelian Poincaré duality.

In particular, one might be interested in computing

χ(BunG(M)) =
∑
[P ]

1

|Aut(P )|
,

which makes sense over a finite field. The computation of this quantity is
known as Weil’s conjecture on Tamagawa numbers.

(5) Topology of mapping spaces. Now M is an n-manifold without bound-
ary andA will be an n-fold loop space, A = ΩnZ = Maps((Dn, ∂Dn), (Z, ∗)).
The output is a space weakly homotopy equivalent to Mapsc(M,Z) if
πiZ = 0 for i < n. This is also known as nonabelian Poincaré duality.
Again the left hand side is more complicated but more easily manipulated.

(6) n-disk algebra (perturbative TQFT). Here M is an n-manifold and A
is an n-disk algebra (or an En-algebra) in chain complexes. The output is a
chain complex and has some sort of interpretation in physics. One thinks of
A as the algebra of observables on Rn, and

∫
M
A is the global observables

(in some derived sense). In a rough cartoon of physics, one assigns to opens
sets of observables, and a way to copmute expectation values. Factorization
homology puts together local observables to global observables:

Obs(M) '
∫
M

A,

at least if we are working in perturbative QFT.
(7) TQFT. Here M is an n-manifold (maybe with a framing) and A is an

(∞, n)-category (enriched in V). The output is a space (if enriched, an ob-
ject of V), which is designed to remove the assumptions from the examples
above.

That’s all the examples for now. Next class we’ll go over how one might have
come up with factorization homology. It is worth noting that in this class we will



4 FACTORIZATION HOMOLOGY

focus on learning factorization homology as a tool instead of aiming to reach some
fancy theorem. Hopefully this will teach you how to apply it in contexts you might
be interested in.

Pax: What is the physical interpretation of the first and second chiral homolo-
gies? John: One might be interested in things like Wilson lines, where these higher
homology groups come into play.
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2. How to come up with factorization homology yourself [09/22/17]

2.1. Kan extensions. Consider the following thought experiment. Suppose you
want to study objects in some context M. Unfortunately objects here are pretty
hard in general. Inside M, however, we have some objects D ⊂ M that are
particulary simple, and moreover we know that everything else in M is “built out
of” objects in D.

Let’s consider the example where M is a nice category of (homotopy types of)
topological spaces. Let D consist of the point, i.e. all contractible spaces. Now to
study M we might map functors out of it into some category V. Let’s start with
D instead. Consider Fun(∗,V). Of course this is canonically just V. How do we
extend this to studying M? We have an obvious restriction map

Fun(M,V) Fun(∗,V).
ev∗

We want to look for a left adjoint to this functor ev∗ John: If you don’t know
what a left adjoint is you
should learn it because I
won’t tell you. No, I’m not
joking (laughs).

There are two different things
we could do. We could ignore the homotopy-ness of everything, and take the naive
categorical left-adjoint. If, say V is the category of chain complexes, this naive
left-adjoint produces a stupid answer. . . depending on what our precise definitions
are. Let’s suppose that by M we meant the homotopy category of spaces (here
objects are spaces and maps are sets of homotopy classes of maps). Then we are
extending

∗ V

hoSpaces

A

A naive left adjoint would take the functor A to the functor sending a space X to the
stupid answer A⊕π0X (on morphisms take summands to summands corresponding
to where the connected components are sent). Why is this a left adjoint?Similarly if we take M to be just

spaces and all continuous maps, X would be sent to A⊕X . Here by X we mean the
underlying set of elements of X.

There is a more sophisticated notion of a derived or homotopy left adjoint.
Suppose now that by M we mean the topological category of spaces, where the
mapping sets are spaces equipped with the compact-open topology. Now we take
a homotopy Kan extension. This fancy left adjoint will now send a space X to
the the chain complex C∗(X,A) (up to equivalence). Hence we see that we can
recover homology from this paradigm of extending a simpler invariant to the whole
category.

How do we choose what D and M are? Suppose we want to study F(M) for
M ∈ M. For concreteness, let’s say we’re studying manifolds. The most basic
question to ask: is there a local-to-global principle for F? The simplest case is for
F to be a sheaf, i.e.

F(M) limU∈U F(U).∼

If so you don’t need factorization homology, and you can just leave.
For instance, consider F = C∗(Maps(·, Z)) taking spaces to chain complexes. Is

this a sheaf? Well if we forget about C∗, we get a sheaf, as a map into Z is the
same as giving maps on subsets of the domain that agree on overlaps. What does
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taking chains do? Well notice that

C∗(Maps(U
∐

V,Z)) = C∗(Maps(U,Z)×Maps(V,Z))

= C∗(Map(U,Z))⊗ C∗(Maps(V,Z)).

This is not a sheaf because in this case tensor products and direct sums are never
the same for these chain complexes!Why? So what can we do? We need to change what
we consider D to be from open coverings to something else.

Idea: to study F maybe there are more general arrangements of D ⊂ M such
that local-to-global principles still apply, without F being a sheaf.

2.2. Manifolds. The following problem will guide us for the next few weeks.

Let M be a manifold and let Z be a space. Calculate the homology
of the mapping space H•Maps(M,Z).

To begin, let us specify which categories we will be working with.

Definition 1. Let Mfldn be the (ordinary) category of smooth n-manifolds, with
Hom(M,N) = Emb(M,N) the set of smooth embeddings of M into N . Similarly,
let Mfldn be the topological category of smooth n-manifolds, with Hom(M,N) =
Emb(M,N) the space of smooth embeddings of M into N , equipped with the
compact open smooth topology.

The compact open smooth topology takes a bit of work to define, so we’ll leave
that as background reading. A good reference is Hirsch’s book on differential topol-
ogy [Hir94]. Roughly, convergence in this topology is pointwise in the map as well
as all its derivatives. To get a feel for what this entails, consider a knot. Locally
tighten the knot until the knot turns (locally) into a line. These knots would would
converge in the usual compact-open topology to another knot, but in the smooth
topology, they do not converge as the tightening procedure creates sharp kinks. In
particular π0Emb(S1,R3) is very different from π0Embtop(S1,R3).

Definition 2. We define the category Diskn to be the full subcategory of Mfldn
where the objects are finite disjoint unions of standard Euclidean spaces

∐
I Rn.

Similarly the category Diskn is the full topological subcategory ofMfldn where the
objects are finite disjoint unions of Euclidean space.

Observe that HomDiskn(Rn,Rn) = Emb(Rn,Rn).

Lemma 3. The map Emb(Rn,Rn) → GLn(R) ' OnR given by differentiating at
the origin is a homotopy equivalence.

Proof sketch. There is an obvious map GLnR → Emb(Rn,Rn). One of the com-
posites is thus clearly the identity. It remains to show that the other composition
is homotopic to the identity. The homotopy is given by shrinking the embedding
down to zero. �

This fact should fill you with hope. The objects which are building blocks of man-
ifolds have automorphism spaces that are, up to homotopy, just finite-dimensional
manifolds. Actually it will be useful to think of the n-disks as some sort of algebra.

Definition 4. An n-disk algebra in V is a symmetric monoidal functor A : Diskn →
V.
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As we stated before, our first goal in this class is to understand the homology
H∗Maps(M,Z) using n-disk algebras and factorization homology.

Question from someone: what’s the relation with En-algebras? John: It turns
out that En-algebras are equivalent to n-disk algebras with framing.

Question from Tochi: what if you work with manifolds with boundary? John:
well if you require boundaries to map to boundaries you can make the same defi-
nitions. You then have to work with Euclidean spaces and half-spaces. You’ll end
up with two types of algebras instead of just n-disk algebras.
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3. Framings [09/25/17]

3.1. Framed embeddings, naively.

Definition 5. A framing of an n-manifold M is an isomorphism of vector bundles
TM ∼= M × Rn.

Of course, not all manifolds have framings. For instance, one can check that all
(compact oriented) two-manifolds except for S1 × S1 do not admit framings. You
might use the Poincaré-Hopf theorem, which expresses the Euler characteristic as
a sum of the index of the zeroes of a vector field v on M that has isolated zeroes.
Hence if M is framed, the Euler characteristic of M must be zero.

Here is an example of a theorem that John does not know how to prove without
the use of homology.

Theorem 6 (Whitney or Wu). Every orientable three-manifold admits a framing.

Pax: isn’t there a later proof of this via geometric methods by Kirby? John:
well ok I don’t know how to prove it without homology. . .

Notice that any Lie group has a framing, as one takes a basis for the Lie alge-
bra and pushes it forward by the group action. On the other hand, manifolds of
dimension four generally do not have framings (at least in John’s experience).

We can ask the following question: what is a framed open embedding? There
are a few options. The naive (strict) option is as follows. Suppose that we have
an open embedding M ↪→ N of framed manifolds. The pullback of TN is TM , we
have two different trivializations of TM . We might ask that the induced map of
trivial bundles M ×Rn →M ×Rn be the identity. In other words, we ask the two
framings to be the same.

Okay fine, but lets think about what we want the answer to be. Embeddings are
very flexible you can stretch them and twist them. But strict framed embeddings are
very rigid the way we’ve defined them above. For instance, they are automatically
isometries (giving the fibers the usual Euclidean metric). But of course there aren’t
very many isometric embeddings into a compact manifold. Thus the strict definition
of a framed embedding is not what we want to work with.

3.2. Framed embeddings, homotopically. Let’s consider a more lax definition.
Thinking homotopy theoretically, recall that the tangent bundle is classified by a
map TM : M → Grn R∞. This map is of course defined only up to homotopy.
That’s fine, just choose a representative. Over the infinite Grassmannian we have
the infinite Stiefel manifold Vk(R∞)→ Grn R∞. Choosing a lift

VnR∞

M GrnR∞TM

φM

is precisely the data of a framing.Why? Suppose now that we have an embedding M ↪→ N
where M,N are framed by φM and φN respectively. The lax definition of a framed
embedding is now going to be extra data: an embedding together with a homotopy
between the framings φM and φN |M .
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Definition 7. The space of framed embeddings Embfr(M,N) is the homotopy
pullback

Embfr(M,N) Emb(M,N)

MapsVnR∞(M,N) MapsGrn R∞(M,N)

In particular a framed embedding is an embedding M ↪→ N and a homotopy in
MapGrn R∞(M,N) between the images along each map.

Exercise 8. Check that VnR∞ ' ∗.

With all this talk of homotopy pullbacks (which we’ll talk about in more detail
next time) it looks like we’ve made things more complicated, whereas we introduced

framings to make things simpler. Let’s calculate Embfr(Rn,Rn) as an example. By
definition, this sits in the following diagram

Embfr(Rn,Rn) Emb(Rn,Rn)

MapsVnR∞(Rn,Rn) MapsGrn R∞(Rn,Rn).

Notice that the bottom left object is homotopy equivalent to Maps∗(Rn,Rn) ' ∗.
The bottom right space is homotopy equivalent to the loop space Ω Grn R∞ '
ΩBO(n) ' O(n). From last time, Emb(Rn,Rn) ' Diff(Rn) ' GL(n) ' O(n) (this
is homework 1). Now the vertical map on the right is a homotopy equivalence.
This implies (by some machinery) that the vertical map on the left is an equivalence.
We conclude that

Embfr(Rn,Rn) ' ∗.
The rest of homework 1 is to show that Emb(Rn, N) is homotopy equivalent to
the frame bundle of TN . Applying this to the diagram above where we replace the
second copy of Rn with N , we obtain

Embfr(Rn, N) Emb(Rn, N)

MapsVnR∞(Rn, N) MapsGrn R∞(Rn, N).

Now the same argument will show that the vertical map on the right is an equiva-
lence, and that the map of the left is an equivalence. It follows now that

Embfr(Rn, N) ' N.

Hence we see that by adding framings we are replacing the role of the orthogonal
group by that of a point. Indeed, this will allow for an easier transition between
algebra and topology.

Definition 9. We define the category D iskrect
n to be the topological category con-

sisting of finite disjoint unions of open unit disks
∐
I D under rectilinear embed-

dings. In other words, embeddings which can be written as a composition of trans-
lations and dilations. Here we use the usual topology indcued from the smooth
compact-open topology.
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One advantage of rectilinear embeddings is that they are easy to analyze. For
instance, the space of embeddings from a single disk to a single disk is contractible:
take an embedding, translate it to the origin, and the expand it outwards. In this
way D iskrect

n (D,D) = Embrect(D,D) deformation retracts onto the identity map.
More generally, one checks that there is a homotopy equivalence

D iskrect
n (

∐
Dn, Dn) Confk(Dn)∼

Next time we will prove the following.

Proposition 10. There is a homotopy equivalence D iskrectn ' D iskfrn .
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4. Homotopy pullbacks and framing [09/27/17]

Let’s define more precisely some of the terms we used last time.

4.1. Homotopy pullbacks.

Definition 11. Suppose we have a map f : X → B together with a point ∗ ∈ B.
The homotopy fiber of X → B over ∗ ∈ B is the fiber product

hofiber(f : X → B) := {∗} ×B Maps([0, 1], B)×B X.

In particular it is the space of triples (∗, φ, x) where φ(0) = ∗ and φ(1) = f(x).

hofiber(f) X

∗ B

Lemma 12. The formation of homotopy fibers is homotopy invariant. More pre-
cisely, given an weak equivalence of spaces X → X ′ over B a pointed space via
maps f and g,

X X ′

B

then the homotopy fiber of f is weakly equivalent to the homotopy fiber of g.

Proof. Simply apply the (naturality of the) long exact sequence on homotopy groups
for a Serre fibration to the map of fibrations Why are these fibrations?

hofiber(f) hofiber(g)

Maps([0, 1], B)×B X Maps([0, 1], B)×B X ′

B

We conclude that π∗ hofiber(f) ∼= π∗ hofiber(g). �

Homework 2: Show, more generally, that homotopy pullbacks are homotopy
invariant.

Recall last time we were discussing MapsB(M,N) for some space B: maps “over”
B. This object is defined to be the homotopy

MapsB(M,N) Maps(M,N)

∗ Maps(M,B)

In our case the map on the bottom is (a choice of) the map classifying the tangent
bundle of M . Returning to last lecture, notice that by homotopy invariance we
can argue that MapsVnR∞(M,N) ' Maps(M,N) since VnR∞ ' ∗. Hopefully this

background fills in some of the gaps we left open during last lecture. But here we are using
homotopy invariance in the
base?
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4.2. Framed vs rectilinear n-disks. Let us now return to our assertion from last
time.What is a homotopy

equivalence of topological
categories?

Proposition 13. There is a functor D iskrectn → D iskfrn which is a homotopy equiv-
alence.

Proof. Using the computations from last lecture we see that

D iskfr
n(Rn,Rn) ' ∗ ' D iskrect

n (Dn, Dn).

What this functor does on objects is clear. On morphisms, the framing is deter-
mined by the dilation factor present in the rectilinear embeddings. More generally,
consider

D iskrect
n

(∐
I

Dn,
∐
J

Dn

)
=

∐
π:I→J

∏
J

D iskrect
n

 ∐
π−1(j)

Dn, Dn

 .

So it suffices to show that

D iskfr
n

(∐
I

Rn,Rn
)
' D iskrect

n

(∐
I

Dn, Dn

)
.

Recall that ev0 : D iskrect
n (

∐
Dn, Dn) → ConfI(D

n) is a homotopy equivalence,
which we mentioned ast time. Returning to our homotopy pullback square

Embrect(
∐

Rn,Rn) Emb(
∐

Rn,Rn)

∗ ' MapsEO(n)(
∐

Rn,Rn) MapsBO(n)(
∐

Rn,Rn)

notice that

Fr(TM) ' Emb(Rn,M) Emb((Rn, 0), (M,x)) ' O(n)

M {x}

ev0

Likewise

Emb(
∐

Rn,M)
∏
I O(n)

ConfI(M) {x1, . . . , xI}

ev0

Hence MapsBO(n)(
∐

Rn,Rn) '
∏
I MapsBO(n)(Rn,Rn) '

∏
I O(n).

Up to homotopy, we now obtain

Embfr(
∐

Rn,Rn) ConfI(Rn)×
∏
I O(n)

∗
∏
I O(n)

so we conclude that Embfr(
∐

Rn,Rn) ' ConfI(Rn) which concludes the proof of
the proposition. �
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Example 14. Consider the case n = 1. What do the framed and rectilinear
embeddings look like in this case? Well D iskfr

n(
∐
I R1,R1) ' ConfI(R1) is discrete

up to homotopy, and thus identified noncanonically with the symmetric group on
I letters.

Recall a definition from the first day.

Definition 15. An En algebra in V is a symmetric monoidal functor D iskrect
n → V⊗.

Next time we will see that E1-algebras are, in a suitable sense, equivalent to
associative algebras.



14 FACTORIZATION HOMOLOGY

5. Examples of n-disk algebras [09/29/2017]

Notice that we have a functor D iskfr
n → D iskn. In particular, the former category

has less structure than the latter.Why is this?

Let’s recall the following way of thinking about a commutative algebra.

Definition 16. A commutative algebra in V⊗ (a symmetric monoidal category) is
a symmetric monoidal functor

(Fin,
∐

) (V,⊗),A

where Fin is the category of finite sets.

This probably looks a little unfamiliar, so let’s unpack it. Observe that the
underlying object is A = A(∗). The unit morphism is A(∅) = 1V → A(∗). Here
1V is the symmetric monoidal unit in V. The multiplicative structure comes from
the map from the two-point set to the one-point set, and the commutativity follows
from the fact that this map is Σ2-invariant and that A is a symmetric monoidal
functor so that A⊗2 → A is Σ2-invariant as well.

Definition 17. For V a symmetric monoidal topological category, an n-disk al-
gebra is a symmetric monoidal functor D iskn → V. Similarly a framed n-disk
algebra is a symmetric monoidal functor D iskfr

n → V and a En-algebra is a sym-
metric monoidal functor D iskrect

n → V.

Today we will discuss examples of n-disk algebras for V being chain complexes
and toplogical spaces.

(1) There are the trivial n-disk algebras. For instance, consider A = Z, which
sends ∐

I Rn Z⊗I ∼= Z

and any embedding∐
I Rn ↪→

∐
J Rn Z id−→ Z.

We can all agree that this is pretty trivial. More generally, we might take
A = Z⊕B, which sends

∐
I Rn to (Z⊕B)⊗I and sends

∐
I Rn ↪→ Rn to a

map (Z⊕B)⊗I → Z⊗B. What is this map? Let’s start by looking at the
case where |I| = 2. In that case take the map

Z⊕ Z⊗B ⊕B ⊗ Z⊕B ⊗B idZ⊕ idB ⊕ idB ⊕0−−−−−−−−−−−−→ Z⊕B.

You can generalize this for larger I – just take the product on the B factors
to be zero.This map looks weird. Fix it.

(2) Now let A : (Fin,
∐

) → (Ch,⊗) be a commutative dg algebra. There is
a natural symmetric monoidal functor π0 : (D iskn,

∐
) → (Fin,

∐
) which

sends
∐
I Rn 7→ π0(

∐
I Rn) = I. The composition of these maps gives

us an n-disk algebra. The idea here is that in an n-disk algebra there is
not just one way of multiplying things. Indeed, there are Emb(

∐
2 Rn,Rn)

multplications. What we have just done is used the π0 functor to reduce
these various multiplications into the unique multiplication coming from
the unique map from the two-point set to the one-point set.
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(3) The next example is that of an n-fold loop space of a pointed space (Z, ∗).
We will construct a functor D iskn → Top and then postcompose with C∗
to obtain a chain complex. This first functor is ΩnZ : D iskn → Top, which
we will now define. Recall that for M a space and Z a pointed space, we
say that a map M → Z is compactly supported if there exists K ⊂ M
with K compact and such that g|M\K = ∗ ∈ Z. Then we define

ΩnZ := Mapsc(−, Z) : (D iskn,
∐

)→ (Top,×).

If you haven’t thought much about compactly supported maps then there
is something you have to check. Observe that if

U Z

V

g

the map U ↪→ V is an open embedding then the map ḡ, given by sending
a point v to g(v) for v ∈ U and ∗ otherwise, is continuous (homework 3).
Hence Mapsc is covariant via this extension by zero procedure. Moreover
it is symmetric monoidal as it sends disjoint unions to products.

Why is this called the n-fold loop space? Well notice that

ΩnZ = Maps((Dn, ∂Dn), (Z, ∗))
' Mapsc(Rn, Z)

where we identify Rn with the interior of the closed disk Dn. In total, we
get

D iskn
Mapsc(−,Z)−−−−−−−−→ Top

C∗−−→ Ch

whose composite we write C∗Ω
nZ. What happens if we don’t

use compactly supported
and take values in cochains?
What is this n-disk algebra
in terms of things we know?

(4) At the opposite end of the spectrum from trivial algebras are free algebras.
The free En algebra on V ∈ (Ch,⊗), which we’ll notate as

FE(V ) : D iskrect
n → Ch,

sends

Rn 7→
⊕
k≥0

C∗

(
Embrect(

∐
k

Dn, Dn)

)
⊗Σk V

⊗k.

Here the Σk denotes the diagonal quotient. We will define what it does on
morphisms in a moment.

This has the universal property that given any map of chain complexes
V → A for A an En-algebra (by this we mean a map of chain complexes V →
A(Rn)), there exists a unique map of En-algebras such that the diagram

V A

FEn(V )

µ

commutes. The vertical map V → FEn is given by the inclusion into the
k = 1 summand which is just V .
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What is this dashed map? For each k we need a map

C∗

(
Embrect(

∐
k

Dn, Dn)

)
⊗Σk V

⊗k → A(Rn).

To do this we use the map

C∗

(
Embrect(

∐
k

Dn, Dn)

)
⊗Σk V

⊗k µ⊗k−−→ C∗

(
Embrect(

∐
k

Dn, Dn)

)
⊗Σk A

⊗k

and then use the multiplication for A. Let’s explain this. Notice that A :
D iskrect

n → Ch and we have Embrect(
∐
kD

n, Dn)→ MapsCh(A⊗k(Dn), A(Dn))
which by Dold-Kan (recall that everything is enriched in Top) corresponds
to a map

C∗

(
Embrect(

∐
k

Dn, Dn)

)
→ HomCh(A⊗k(Dn), A(Dn))

that is Σk-equivariant. Because of the equivariance it factors to the quo-
tient, which gives us the multiplication map. Now apply (equivariant)
tensor-hom adjunction to obtain this multiplication map. Okay, but we
haven’t yet shown that the free thing is actually an En-algebra, but we’re
out of time.

(5) The last example we were gonna talk about is pretty awesome. Too bad
we’re out of time.

Notice that if Z was an Eilenberg-MacLane space, there is overlap between ex-
amples 2 and 3.
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6. Examples, continued [10/02/2017]

Last lecture we ran out of time in the proof of the following result.

Proposition 18. The functor FEn(V ) sending

Dn 7→
⊕
k>0

C∗

(
Embrect(

∐
k

Dn, Dn)

)
⊗Σk V

⊗k

is the free En-algebra on V ∈ Ch.

Proof. Last time we showed that this functor satisfied the correct universal property
though we hadn’t yet specified what it did on morphisms. To define what it does
to morphisms we need to construct a map

Embrect(
∐
I

Dn, Dn)→ MapsCh(FEn(V )⊗I ,FEn(V )).

By the Dold-Kan correspondence this is equivalent to specifying a map

C∗(Embrect(
∐
I

Dn, Dn))→ Hom(FEn(V )⊗I ,FEn(V ))

which by the tensor-(internal)hom adjunction, is equivalent to the data of a map

C∗(Embrect(
∐
I

Dn, Dn))⊗FEn → FEn(V ),

in other words, a map

C∗(Embrect(
∐
I

Dn, Dn))⊗

⊕
k>0

C∗(Emb(
∐
k

Dn, Dn))⊗Σk V
⊗k

⊗I → FEn(V ).

Let’s maybe just look at the left hand side in the case where I ∼= {0, 1}:

C∗(Embrect(
∐
2

Dn, Dn)⊗
⊕
k0,k1

(
C∗(Embrect(

∐
k0

Dn, Dn))⊗Σk0
V ⊗k0 ⊗ C∗(Embrect(

∐
k1

Dn, Dn))⊗Σk1
V ⊗k1

)

=
⊕

k0,k1≥0

C∗

(
Embrect(

∐
2

Dn, Dn)× Embrect(
∐
k0

Dn, Dn)× Embrect(
∐
k1

Dn, Dn)

)
⊗Σk0

×Σk1
V ⊗(k0+k1)

But from this last expression it is easy to see now that we have a map from what’s
in the parentheses to Embrect(

∐
k0+k1

Dn, Dn)⊗Σk0+k1
V ⊗(k0+k1) by composing the

embeddings (up to keeping track of the symmetric group). �

Let’s talk about the example that we didn’t have time to discuss at the end of
last class. This is the class of En enveloping algebras of Lie algebras. Let g be a
Lie algebra. For simplicity we’ll work over R. John: this works for Lie

algebras valued in spectra
too, up to some changes.We define a functor D iskn → AlgLie(ChR) which sends U 7→ Ω∗c(U, g), i.e. a

Euclidean space to its space of compactly supported de Rham forms. Notice that
this construction sends disjoint unions to direct sums. We now postcompose with
the Chevalley complex CLie

∗ (or if you like CLie
∗ (g) ' R ⊗L

Ug R). We will write this

composite functor as CLie
∗ (Ω∗c(•, g)), and it sends disjoint unions to tensor products.

D iskn AlgLie(ChR) ChR
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We will use the fact that

CLie
∗ (g⊕ g′) ' CLie

∗ (g)⊕ CLie
∗ (g′).

We claim that for n = 1,
CLie
∗ (Ω∗c(R1, g)) ' Ug.

In particular this functor which maps Lie algebras to En-algebras is left-adjoint to
the forgetful functor AlgEn → AlgLie.

Here’s a small aside. Where is this Lie algebra structure coming from? Well
notice that we have a map

C∗(Embrect(
∐
2

Dn, Dn))⊗A⊗2 → A.

But notice that the left-hand side is homotopic to C∗(S
n−1) (do this exercise!). At

the level of homology, this gives a map H∗ S
n−1 ⊗R (H∗A)⊗2 → H∗A. There are

two generators for the homology of Sn−1 and so we a degree 0 map

H∗A⊗H∗A→ H∗A,

which is the associative algebra structure. However, we have another map coming
from the fundamental class of Sn−1,

(H∗A⊗H∗A)[n− 1]→ H∗A,

is a Lie algebra structure on H∗A[1−n]. (Everything here should be valued in Ch)
A reference for this forgetful functor is a paper by F. Cohen.

Since we’re almost out of time, let me give you a hint of what we’ll be doing
next. In factorization homology we are given some functor A : D iskn → Ch (or into
Top). Factorization homology is an extension∫

M

A = hocolim (D iskn/M
A−→ Ch)

an extension that fits into

D iskn/M Ch

Mfldn

A

We need to define not only the homotopy colimit but also what we mean by
D iskn/M . What do we want it to be? Its mapping spaces should fit into the
homotopy pullback diagram

MapsD iskn/M
(U, V ) Emb(U, V )

∗ Emb(U,M)

V ↪→M

U↪→M

As usual, if we require this to be a pullback instead of a homotopy pullback this
space will be too small. In fact, it will be empty. Okay, you say – so let’s just define
a category of n-disks with these mapping spaces. The problem that you will run
into here is that the composition will be associative only up to homotopy due to the
composition of the paths in Emb(U,M) required by the adjective “homotopy”. So
we’ll have to dip our toes into the theory of infinity-categories, which neatly deals
with both this issues and homotopy colimits.



FACTORIZATION HOMOLOGY 19

7. Homotopy colimits [10/04/2017]

We are interested in proving the following result.

Theorem 19. The homotopy colimit is homotopy invariant. More precisely, given
two functors F,G : C → Top and any natural transformation α : F =⇒ G such
that for all c ∈ C, α(c) : F (c)→ G(c) is a homotopy equivalence, then

hocolimC F ' hocolimC G

is a homotopy equivalence.

Notice that we can replace homotopy equivalence everywhere with weak homo-
topy equivalence. Actually we will sketch the proof. The details will be left as
homework 4. There is a problem in the usual theory of colimits: they are not
homotopy invariant. Consider the following simple example. We have a map of
spans

Dn Sn−1 Dn

∗ Sn−1 ∗
where the vertical arrows are homotopy equivalences. But the colimits of the top
and bottom rows are Sn and ∗ respectively, which are of course not homotopy
equivalent.

We have two basic tools that we will use to fix this: Mayer-Vietoris and Seifert-
van Kampen.

Lemma 20. Mapping cones are homotopy invariant. More precisely, if we have a
commutative diagram

X Y

X ′ Y ′

f

∼ ∼

f ′

where the vertical arrows are homotopy equivalences then there is an induced ho-
motopy equivalence on cones, cone f ' cone f ′.

Proof. Recall that the cone is written as the colimit

cone f = ∗ tX×{0} X × [0, 1] tX×{1} Y.

Notice that we have maps cyl f → cyl f ′ inducing an H∗-isomorphism by Mayer-
Vietoris applied to the obvious cover. It remains to argue about the fundamental
group. Applying the Seifert-van Kampen (for fundamental groupoids) to this cover
shows that the fundamental groupoids are equivalent. We conclude that cyl f '
cyl f ′. John: the most important

thing you should take away
from a point-set topology
course is that a closed
embedding of compact
Hausdorff spaces is a
cofibration.

�

Likewise for the homotopy pushout. Given Y ←− X −→ Z the homotopy pushout
is Y tX×0 X × [0, 1] tX×1 Z. This is homotopy invariant as well, which is proved
in an identical fashion.

Recall that ∆ is the category of finite nonempty ordered sets with nondecreasing
functions between them.
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Definition 21. A simplicial space is a functor X• : ∆op → Top. The geometric
realization |X•| is the colimit

|X•|
∐
n≥0Xn ×∆n

∐
[m]→[l]Xl ×∆m

The basic principle is that the “generators” are given by coproducts and the
“relations” are given by reflexive coequalizers. For homotopy colimits the gener-
ators will still be coproducts, but the relations will be handled by the geometric
realization.

Definition 22. For X• a simplicial space, the nth latching object LnX• is

(1) LnX• = colim
(∆op

<n)/[n]

Xm ⊂ Xn

The index category is the category of maps [n]→ [m] for m < n.Think of this as all the
degenerate simplices induced

from everything below n. We say that X is Reedy cofibrant if the map LnX• → Xn is a cofibration for
all n.

Lemma 23. If we have a map of simplicial spaces X• → Y• such that both X and
Y are Reedy cofibrant with the induced maps Xn ' Yn homotopy equivalences then
|X•| ' |Y•|.

Proof outline. We proceed by induction on skeleta. In particular we have the geo-
metric realization of the n-skeleton

| sknX•|
∐
k6nXk ×∆k

∐
[m]→[l];m,l6nXl ×∆m

These skeleta sit inside the total geometric realization as closed embeddings whence
|X•| = lim | sknX•|. So we will prove |X•| ' |Y•| by proving that | sknX•| '
| skn Y•. The base case just says that sk0X•X0 ' Y0 = sk0 Y0. For the inductive
step check that there is a pushout

LnX ×∆n
∐
LnX×∂∆n Xn × ∂∆n skn−1X•|

Xn ×∆n sknX•|

Likewise for Y . By the inductive hypothesis we know that the map from the top
right of the diagram for X to the top right of the diagram for Y is a homotopy
equivalence. By assumption the same is true for the bottom left corner. Similarly
one has to prove that the top left is a homotopy equivalence. It is then important
that the top and left arrows are cofibrations to conclude that the n-skeleton of X
is homotopy equivalent to the n-skeleton of Y . �

Write out the details of this proof as homework 4.
Let’s now turn to homotopy colimits. Given C a category we have a simplicial

object NC∗ : ∆op → Set, the nerve of C. Observe that the ordinary colimit always
receives a surjective map from the coproduct of the functor applied to all the objects
in the indexing category. In particular the colimit will always be this coproduct
quotiented by a relation coming from morphisms in C. For homotopy colimits we
will get a map F : NC → Top sending [p] 7→ tNCpF and hocolimC F = |F•|.
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8. Homotopy colimits, continued [10/06/2017]

8.1. Homotopy colimits. Recall that if we have an ordinary functor F : C → Top
then the colimit colimC F can be expressed as a coequalizer: a quotient of the
coproduct of F (c) for all c ∈ C by the maps in C (every colimit is a reflexive
coequalizer of coproducts).

Definition 24. Given F : C → Top we write F• : ∆op → Top for the functor send-
ing [n] 7→

∐
NCn F (c0) (where c0 is the first object in the simplex). The simplicial

structure maps are given by copmosition and identities as usual. Then we define
the Bousfield-Kan homotopy colimit

hocolimC F := |F•|

Notice that every homotopy colimit is a geometric realization of coproducts.

Theorem 25 (Homotopy invariance of hocolim). Suppose we have two functors
F,G : C → Top such that F (c) and G(c) are cofibrant (i.e. CW complexes) for
all c ∈ C, and there is a natural transformation α such that α(c) is a homotopy
equivalence. Then hocolimC F ' hocolimC G.

Proof. This is homework 4 (from last time). Recall that the lemma from last time
tells us that given a map of Reedy cofibrant simplicial spaces X• → Y• inducing
equivalences on n-simplices for every n, the geometric realizations are equivalent.
Hence we need only check Reedy cofibrancy for F• and G•.

In this case the nth latching object of F• is

LnF• =
∐

F (c0)

where the coproduct is taken over all degenerate n-simplices of NC. But by the CW
complex assumption above the maps LnF• ↪→ F• is a cofibration, as desired. �

8.2. Factorization homology—a predefinition.

Definition 26. We define Diskn/M to be the category of n-disks embedding in M
with morphisms given by inclusion (it is equivalent to the subposet of opens on M
such that the image is diffeomorphic to an n-disk).

We can make the following predefinition (easier to make, harder to work with).
Given A : Diskn → Top we define the factorization homology∫

M

A := hocolimDiskn/M A.

Really we should be working with the topological version D iskn/M but it will end
up being homotopy equivalent.

We want factorization homology
∫
M
A to be M , where we replace Rn with A(Rn).

Example 27 (Desiderata).

(1) if A = ∗? Then we would like
∫
M
∗ ' ∗.

(2) if A(
∐
I Rn) =

∐
I Rn then

∫
M

id 'M.

(3) be able to compute
∫
M
A for A belonging to the examples we discussed

earlier. For instance, commutative algebras, n-fold loop spaces, free n-disk
algebras, trivial n-disk algebras, and enveloping algebra of a Lie algebra.

(4) if A lands in Ch sending
∐
I Rn 7→ A⊕I then

∫
M
A ' C∗(M,A) (and likewise

for spectra).
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We need tools for computing homotopy colimits. For instance, it is useful to
introduce the topological version,

Diskn/M → D iskn/M ,

and it turns out that homotopy colimits over these two categories are equivalent.
To make statements like this, we need crieria for when two homotopy colimits are
equivalent when they’re indexed by different categories.

Since we don’t have time left today to introduce∞-categories, let’s go over some
properties of hocolim.

Theorem 28 (Quillen’s theorem A). Let g : C → D is a functor. If F is some
functor from D to some target (such as topological spaces). Then

hocolimC F ' hocolimD F

if and only if g is final. In other words, for d ∈ D, define Cd/ := C ×D Dd/, and
say that g is final if B(Cd/) ' ∗ where BC := hocolim ∗.

There is another key property of homotopy colimits involving hypercovers. Sup-
pose we have a functor C → Opens(X) ↪→ Top. When is

hocolimC F ' X?

Define, for x ∈ X, Cx to be the full subcategory of objects c such that x ∈ F (c). If
BCx ' ∗ for each x ∈ X then hocolimC F ' X.

Exercise 29. hocolim∗ F = F (∗).
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9. ∞-categories [10/09/2017]

9.1. Topological enrichment. Suppose we have a category T with products as
well as a functor ∆→ T from the ordinal category. Then MapsT (s, t) is a simplicial
set with

MapsT (s, t)p = HomT (s× [p], t),

where by [p] we denote the image of the functor. If we now apply geometric real-
ization, we obtain mapping spaces.

Consider for example T = Top (as a non-enriched, ordinary category). There
is a functor ∆ → Top which sends [p] to the geometric p-simplex. Then we get a
simplicial set MapsTop(X,Y )•, and notice that

MapsTop(X ×∆p, Y ) ∼= MapsTop(∆p,MapsTop(X,Y ))

where we equip the set MapsTop(X,Y ) with the compact-open topology, as usual.
Hence the simplicial set MapsTop(X,Y )• is isomorphic to the singular simplicial set
Sing MapsTop(X,Y ). If we apply the geometric realization, since |SingA| ' A, we
see that we obtain the usual topological enrichment (at least up to homotopy) on
the category Top.

This trick allows us to enrich various categories in Top. As we have seen above
the category of topological spaces is an immediate example, and it is not hard to
do similarly for the category of simplicial sets. Another two familiar examples are
those of chain complexes and natural transformations of functors. For a slightly
unfamiliar example one could use the functor ∆ → CAlgop

R of de Rham forms on
simplices, which sends [p] 7→ Ω∗(∆p), to give the (opposite) category of commuta-
tive R-algebras a topological enrichment.

This leads us to the following general idea, which highlights the importance of
topological enrichment.

Principle: Everywhere where there is a notion of homotopy, there
exists an enrichment in Top such that this is an actual homotopy.

9.2. Complete Segal spaces and quasicategories. Now, whatever∞-categories
are, they should have two properties:

(1) The collection of ∞-categories up to some notion of equivalence should be
equal to the collection of topological categories modulo homotopy equiva-
lence (see below for the formal definition).

(2) Colimits, limits, functor categories, over/undercategories in ∞-categories
are homotopy colimits, homotopy limits, etc. in the corresponding topo-
logical category.

Definition 30. Let F : C → D be a functor between topological categories. We
say that F is a homotopy equivalence if for each c, c′ ∈ C, MapsC(c, c

′) '
MapsD(Fc, Fc′) and every object d ∈ D is homotopy equivalent to some F (c) for
c ∈ C. In other words, there exists a map d → Fc such that MapsD(e, d) →
Maps(e, Fc) is a homotopy equivalence for all e ∈ D.

So that’s roughly the philosophy of∞-categories. They are a nice ground to work
on when dealing with homotopy invariance. When it comes to actually defining∞-
categories, there is a conceptual option and a more economical option: complete
Segal spaces and quasicategories, respectively. Let me tell you briefly about com-
plete Segal spaces.
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When we are given C a category, there is a set of objects and a set of morphisms.
However, the only way we ever use categories is up to equivalence, and these un-
derlying sets have no invariance properties with respect to equivalence of categories
(for instance the sets of objects or corresponding sets of morphisms need not have
the same number of elements). This leads us to the question: how can we think of
a category in a way that better reflects the homotopy theory (i.e. equivalences) of
categories.

It turns out that we can construct spaces of objects and morphisms of C in the
following way. Consider the underlying groupoid C0 ⊂ C where we have thrown
out all the noninvertible maps. Taking the nerve (classifying space) NC0 gives us
a simplicial set. The associated space is of course the geometric realization |NC0|.
For morphisms, consider the category Funiso([1], C) of functors [1]→ C with natural
transformations through isomorphisms. This category is a also a groupoid, so we
obtain a space |N Funiso([1], C)|.

Observe now that if we have two equivalent categories C ' C′ then the spaces of
objects and morphisms that we have defined above will be homotopy equivalent.
Generalizing these constructions for higher [p] we obtain a fully faithful functor

C• : Cat ↪→ Fun(∆op,Top)

sending a category C to the simplicial space that sends [p] 7→ N Funiso([p], C). It
moreover has the property that the diagram

C•[2] C•{1 < 2}

C•{0 < 1} C•{1}

is actually a homotopy pullback square (this turns out to more or less character-
izes the image of C•). In particular, one should suspect (correctly) that colimits
and limits will be mapped to homotopy colimits and homotopy limits. Unfortu-
nately, going down this path to ∞-categories quickly turns into messing around
with bisimplicial sets, which starts to get a bit complicated.

This leads us to the more economical option of quasicategories. For quasicate-
gories there is only one simplicial index involved and there is the important advan-
tage that there are thousands of pages of reference material.

Definition 31. A quasicategory C is a simplicial set such that every inner horn
(for n ≥ 2) has a filler.

Let’s explain these terms. Write ∆[n] for the geometric n-simplex (the functor
∆op → Set given ∆[n] = Hom∆(−, [n])). There are a number of maps ∆[n− 1]→
∆[n] induced by maps [n− 1]→ [n] that skipping some i. Then the ith horn of the
geometric n-simplex is defined to be

Λi[n] =
⋃

∆[n− 1]

where the union is over all faces ∆[n− 1] ↪→ ∆[n] except for the ith. For instance
there are three horns of the 2-simplex. An inner horn is a horn where the missing
face is neither the 0th face or the nth face (so the 2-simplex has only one inner
horn, Λ1[2]). Now we can define what it means for a simplicial set C to have inner
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horn fillings. It means that for every map Λi[n]→ C there is a lift, or “filling”,

Λi[n] C

∆[n]

of the map to the simplex making the diagram commute.

Example 32. Spaces and categories are two natural sources of quasicategories.

(1) Consider C = Sing(X). By the adjunction between geometric realization
and Sing the data of a map Λi[n] → SingX is precisely the data of a
map |Λi[n]| → X. Now one can choose (there is no unique choice) say
a retraction |∆[n]| → |Λi[n]|. Composing with the map to X and again
applying adjointness, we obtain a map ∆[n]→ SingX making the relevant
diagram commute. We conclude that the singular simplicial set of a space
is a quasicategory.

(2) Given a category C consider the nerve C = NC. By the Yoneda lemma a
map Λ1[2]→ NC is precisely the data of a composable pair of morphisms
in C. In particular there is a unique way of filling the horn into the simplex
by using the composition of these two maps. A similar argument holds for
higher-dimensional horns. We conclude that the nerve of any category is a
quasicategory.

What we will do next is give the definitions of colimits, limits, functor categories,
and over/undercategories in quasicategories. We will also discuss a variant of the
nerve functor, N : TopCat → QuasiCat, which in good cases will send hocolim 7→
colim.

Grisha: I understand your philosophy that complete Segal spaces are more
compelling than quasicategories. Is there some concrete statement that backs this
claim up? John: I don’t know if this is getting at your question but here’s an
example. There is an inclusion Cat∞ ⊂ Fun(∆op,Top) so it’s easy to give an
internal definition of the ∞-category of ∞-categories. However the corresponding
construction is not so easy with quasicategories.
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10. Colimits in ∞-categories [10/11/2017]

10.1. Colimits in 1-categories. Recall the definition of a colimit of a functor
F : C → D in the theory of ordinary categories. We define the right cone C. of C
as follows. It has objects the objects of C together with an object we denote ∗. For
morphisms we take

HomC.(x, y) =


∗ y = ∗
∅ x = ∗
HomC(x, y) otherwise

Next we define the undercategory DF/ as the fiber

DF/ Fun(C.,D)

{F} Fun(C,D)

It has as objects pairs d ∈ D with a natural transformation F =⇒ d, where d is
the constant functor.What are the morphisms in

the undercategory?
With these definitions we can now define colimits.

Definition 33. An object d ∈ D is a colimit of the functor F : C → D if there
exists a functor F : C. → D with F (∗) ∼= d and such that the natural restriction

DF/ → DF/ is an equivalence.

If you’re a bit confused, like Nilay is, about why this is a colimit, observe that
the category C. has a final object. For any C′ which has a final object, if we have
a functor G : C′ → D then there is an equivalence DG/ ∼= DG

′/, where G′ : C → D
is the restriction of G.

10.2. Colimits in quasicategories. We’d like to make a similar definition for
quasicategories. We will need to be able to define equivalence, right cones, and
undercategories in that context.

Definition 34. For C a quasicategory and any objects x and y (i.e. x, y ∈ C[0])
we define the mapping space MapsC(x, y) as the fiber

MapsC(x, y) Maps(∆[1], C)

{x, y} Maps(∆[0], C)×Maps(∆[0], C)

ev0× ev1

Here Maps(X,Y ) for X and Y simplicial sets is a simplicial set whose set of n-
simplices is the set HomsSet(X × ∆[n], Y ), i.e. the internal hom. The mapping
space is a priori just a simplicial set.

Recall that Kan complexes—simplicial sets that satisfy the horn filling condition
for all horns (not just inner horns)—are the combinatorial analog of spaces.

Lemma 35. As defined above, MapsC(x, y) is a Kan complex.

Definition 36. If F : C → D is a functor between quasicategories (i.e. a map of
simplicial sets), then F is a categorical equivalence if

(1) the induced map F : hC → hD is an equivalence of categories, where hC is
the category with objects that of C and morphisms the set π0 Maps(X,Y )n.
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(2) for any x, y ∈ C the induced map F : MapsC(x, y) → MapsD(Fx, Fy) is a
homotopy equivalence (equivalently a homotopy equivalence after geometric
realization).

Now we need the notion of the right cone of a simplicial set. Well for a hint of
what this definition should be, let’s look at the nerve of the right cone construction
above:

N(C.)k = Fun([k], C.) = ∗ t
k∐
i=0

Fun([i], C)

= ∗ t
k∐
i=0

N(C)i.

This leads us to the following definition.

Definition 37. For S a simplicial set, define the right cone on S to be

S.k = ∗ t
∐
i6k

Si.

One checks that this naturally forms a simplicial set.

Definition 38. For F : C → D a functor of quasicategories, we define the under-
category DF/ to be the fiber

DF/ Fun(C.,D)

{F} Fun(C,D)

Definition 39. We say that d ∈ D is a colimit of F if there exists a functor

F : C. → D with F (∗) = d and DF/ ' DF/ is a categorical equivalence.

Theorem 40.

(1) Colimits in a quasicategory are invariant upto categorical equivalence. In
other words, if we have an equivalence C ' C′ and D ' D′ with a commu-
tative diagram

C C′

D D′
F F ′

then colimC F = colimC′ F
′. What does this mean?

(2) The simplicial set Fun(C,D) is a quasicategory if C,D are quasicategories,
and is invariant up to categorical equivalence. In other words, there is a
categorical equivalence of quasicategories Fun(C,D) ' Fun(C′,D′).

The proof is a straightforward exercise in model categorical language and we
might work through this in the future. First let’s explain why these results are so
great, and why they motivate working with quasicategories.

Consider D iskrect
∞ = lim−→D iskrect

n the sequential limit. One finds that D iskrect
∞ '

Fin. For motivation for why this might be true, recall that Embrect(
∐

2D
n, Dn) '
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Sn−1 and as n grows large we obtain S∞, which is contractible. A basic question
one might ask is whether there is a factorization

D iskrect
∞ Top

Fin

It turns out that there does not exist such a factorization in general:

Fun(Fin,Top) 6' Fun(D iskrect
∞ ,Top)

This is stemming from the fact that infinite loop spaces are not equivalent to topo-
logical groups.Expand on what this has to

do with ∞-categories. Is the
point that passing to

∞-categories will yield an
equivalence?
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11. Homotopy invariance I [10/13/2017]

Recall there was a homework problem to show that there is a continuous as-
signment Mapsc(U,Z)→ Mapsc(V,Z). I should have specified that we are to give
Mapsc(U,Z) the subspace topology as inherited from Maps∗(U

+, Z). If we view
it as a subspace of Maps(U,Z) this is statement is not true. Of course, this did
not seem to prevent you from proving it. . . you know what they say—where there’s
a will, there’s a way. Anyway, for the next homework revise that solution. In
addition, do the following for homework.

Exercise 41. Prove that there is a homeomorphism |∆[n]| ∼= ∆n. Moreover, show
that the geometric realization |X| of a simplicial set X has the structure of a CW
complex with an n-cell for each nondegenerate n-simplex.

I want to give you a good taste of proofs in quasicategory theory, without having
to prove absolutely everything. The following (the homotopy invariance of colimits)
should be a good pedagogical example with which we can “get in and get out” of
the theory of quasicategories. The main reference will of course be Jacob Lurie’s
Higher Topos Theory [Lur09].

Proposition 42 (HTT proposition 1.2.9.3). Let p : C → D be a map of quasicat-
egories and j : K → C be any map. Then if p is an equivalence, so is the induced
map

Cj/ Dp◦j/.∼

Matt: how does this relate to the notion of pointwise homotopy invariance?
John: this result is a bit harder than that one. How does this imply the

statement last lecture about
colimits?Let’s outline the proof:

(1) Cj/ is a quasicategory
(2) Cj/ → C is a left fibration
(3) Given two left fibrations C′, C′′ over C, and a compatible map g between

them, then g is an equivalence if it is an equivalence on fibers. In other
words it is an equivalence if for all x ∈ C the map C′ ×C {x} → C′′ ×C {x}
is an equivalence of Kan complexes.

We’ll begin by showing (2). We first need a definition.

Definition 43. For X,Y simplicial sets, the join X ? Y is the simplicial set given
on totally ordered sets as

(X ? Y )(J) =
∐

J=I
∐
I′

X(I)× Y (I ′)

where in the coproduct, every element of I is less than every element of I ′. Equiv-
alently,

(X ? Y )([n]) = Xn t

 ∐
i+j=n−1

Xi × Yj

 t Yn
In the case where C,D are categories, one can check that the usual join C ? D,

which has

HomC?D(x, y) =


Hom(x, y) x, y ∈ C or x, y ∈ D
∗ x ∈ C, y ∈ D
∅ otherwise



30 FACTORIZATION HOMOLOGY

has the property that its nerve is the quasicategorical join of the corresponding
nerves of C and D. A similar statement is true for spaces. Another thing to check
is that X. = X ?∆[0]. Homework 6: Check that ∆[n] ?∆[m] ∼= ∆[n+m+ 1]

Definition 44. A class of morphisms S ⊂ C (for C an ordinary category) is
weakly saturated if it is

(1) closed under pushouts,
(2) closed under (transfinite) composition,
(3) and closed under retracts.

This notion is important because any map that has a lifting property with respect
to some class of morphisms S then it will also have the lifting property with respect
to the weakly saturated closure.Did I say this correctly?

Definition 45. We say that A→ B is left/right/inner anodyne if it belongs to
the smallest weakly saturated class containing (for n ≥ 1), {Λi[n] ↪→ ∆[n], i < n}
(left), {Λi[n] ↪→ ∆[n], i > n} (right), {Λi[n] ↪→ ∆[n], 0 < i < n} (inner).

Notice that “anodyne” is an english word meaning inoffensive, bland, or unprob-
lematic.

Lemma 46 (HTT proposition 2.1.2.3). Given inclusions of simplicial sets f : A0 ⊂
A, g : B0 ⊂ B such that f is right anodyne or g is left anodyne, then

A0 ? B
∐

A0?B0

A ? B0 ↪→ A ? B

is inner anodyne.

Proof. The two cases are dual so we will just do the case where f is right anodyne.
Consider the class of all morphisms f : A0 → A for which the inclusion of the
proposition is inner anodyne. This class is weakly saturated whence it suffices to
show that it contains Λi[n] ⊂ ∆[n] for 0 < i 6 n. We thus suppose that f is of this
form. Similarly for g: reduce g : ∂∆[m] ⊂ ∆[m]. We now have

Λi[n] ?∆[m]
∐

Λi[n]?∂∆[m]

∆[n] ? ∂∆[m] ↪→ ∆[n+m+ 1].

More homework: Λi[n] ? ∂∆[m] ∼= Λi[n+m+ 1], which concludes the proof. �

Definition 47. We say that X → Y is a inner/left/right fibration if it has the
right lifting property with respect to inner/left/right anodyne maps.

Proposition 48 (HTT proposition 2.1.2.1). Given A ⊂ B p−→ X
q−→ S, with r = q◦p

and r0 : A ⊂ B, with q an inner fibration. Then Xp/ → Xp0/ ×Sr0/ Sr/ is a left
fibration.

This is all to show that Cp/ → C is a left fibration (and that the domain is a
quasicategory).

Sam: what does a left fibration geometrically realize to? A quasifibration? John:
Yeah. [Correction next lecture: I meant to say no. There is a paper of Quillen in
the Annals, titled something like: “the geometric realization of a Kan fibration is
a Serre fibration.” You can guess what the main theorem is. It turns out that
for X → Y a left (or right) fibration it is not necessarily true that |X| → |Y | is a
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quasifibration. As an example, consider the left fibration Cx/ → C. Consider the
fiber

MapsC(x, y) Cx/

{y} C
This cannot possibly yield a quasifibration. Consider a y′ with a map y → y′. We
get a similar fiber MapsC(x, y). But there is no reason for these mapping spaces to
be homotopy equivalent (and similarly after taking geometric realization).

Let’s recall Quillen’s theorem B. Given C → D and the fiber diagram

Cd/ C

{d} D

one might ask when taking classifying spaces yields again a homotopy pullback.
This is true if for all d→ c in D we have that BCd/ ' BCc/.]
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12. Homotopy invariance II [10/16/2017]

Today we’ll discuss the proof of the following fact, which was (1) in our outline
proof of homotopy invariance.

Corollary 49 (HTT 2.1.2.2). For all K
p−→ C the associated undercategory Cp/ is

a quasicategory.

Proof. We claim that Cp/ → C is a left fibration. Left implies inner, so composing
with the map to the point implies that Cp/ → C → ∆[0] is an inner fibration (it is
easy to check that compositions of fibrations are fibrations directly from the lifting
property). We conclude that Cp/ is a quasicategory.

It remains to show that Cp/ → C is a left fibration, which we do below. �

Recall from last time we had shown (if you include the homework) the following.

Lemma 50 (HTT 2.1.2.3). Given f : A0 ↪→ A, g : B0 ↪→ B with either f right
anodyne or g left anodyne then

A0 ? B
∐

A0?B0

A ? B0 ↪→ A ? B

is inner anodyne.

This immediately implies

Proposition 51 (HTT 2.1). Given A ⊂ B
p−→ X

q−→ S with the inclusion denoted
r0 and the composition q ◦ p =: r where q is an inner fibration, then

Xp/ → Xp0/ ×Sr0/ Sr/

is a left fibration.

Proof. Recall that the data of a map J → Cp/ for p : K → C is precisely the data
of a map K ? J → C such that K ? ∅ → C is p. To check that the given map is a
left fibration we look at a diagram

Λk[n] Xp/

∆[n] Xp0/ ×Sr0/ Sr/

Let’s apply our adjunction to obtain compatible maps

B ? Λk[n] X

A ?∆[n] X

B ?∆[n] S

A ?∆[n] S
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Putting these together,

B ? Λk[n] ∪A?Λk[n] A ?∆[n] X

B ?∆[n] S

and applying the lemma above, the vertical map on the left is inner anodyne,
whence because X → S is an inner fibration, there exists a lift. �

This concludes the proof that the undercategory is a quasicategory. To see this,
we apply the proposition to the case where X = C, A = ∅, and B = ∗. Hence
Cp/ → C is a left fibration. Huh?

Sean: is there a time when it matters that these were left fibrations and not
just inner? John: absolutely. Think of inner as a technical condition but left/right
as a homotopy invariant property. In particular, every functor is equivalent to an
inner fibration. This is not at all true for left fibrations. In particular, LFibD '
Fun(D,Spaces)—they’re like “fiber bundles with connection on D.”

Proposition 52 (HTT 1.2.5.1). For C a simplicial set the following are equivalent:

(1) C is a quasicategory and hC is a groupoid;
(2) C → ∗ is a left fibration;
(3) C → ∗ is a right fibration;
(4) C → ∗ is a Kan fibration, i.e. C is a Kan complex.

If any of these are try we call C an ∞-groupoid or space.

Proposition 53 (HTT 1.2.4.3). A morphism φ : ∆[1]→ C in a quasicategory C is
an equivalence if and only if for any extension f0 : Λ0[n]→ C

∆[1] C

Λ0[n]

∆[n]

φ

there is a lift to a map f : ∆[n]→ C.

Proof. By adjunction

{0} C/∆[n− 2]

∆[0 < 1] C/∂∆[n− 2]

That proves one direction. For the other direction take a map φ : x→ y. We have

a filler Λ0[2] ↪→ ∆[2]
ψ−→ C call it σ. This 2-simplex σ gives a homotopy idx ' ψ ◦φ.

Show that φ ◦ ψ ' idy for homework. �

This implies the equivalence of (1) ⇐⇒ (2) and dually (1) ⇐⇒ (2). But then
(1) ⇐⇒ (2) + (3) = (4).
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13. Homotopy invariance III [10/18/2017]

Recall last time we wanted to prove Proposition 1.2.5.1.

Proof. To show that (1) =⇒ (2) notice that every ∆[1]→ C is a homotopy equiva-
lence. Choose any f0

Λ[n] C

∆[n]

f0

and now by the previous proposition there exists an extension

∆[0 < 1]

Λ0[n] C

∆[n]

To see that (2) =⇒ (1) draw the same picture and apply the proposition, which
implies that φ is an equivalence.

Notice that by taking opposites (1) ⇐⇒ (2) implies (1) ⇐⇒ (3), since taking
opposites takes left fibrations to right fibrations. Hence (1) ⇐⇒ (2) + (3). But
being a left and right fibration is the same as being a Kan fibration, which completes
the proof. �

Corollary 54. If C is a quasicategory there exists a maximal sub-Kan complex C0

whose morphisms consist of the homotopy equivalences in C.Figure out the HTT number.
Fix the notation to tilde.

Proof. We can define C0 as the subsimplicial set with 1-simplices the homotopy
equivalences. C0 is a quasicategory, and hC0 is a groupoid if and only if C0 is a Kan
complex. �

In particular we have Kan ⊂ QCat ⊂ sSet and the construction in the corollary
is the right adjoint to the inclusion Kan ↪→ QCat.

Recall that our purpose was to show that colimits in quasicategories are invariant

with respect to categorical equivalence. In particular, given J
j−→ C p−→ D where p is

a categorical equivalence, we want to show that Cj/ ' Dp◦j/. We first needed the
undercategories to be quasicategories. This we showed last time. Next we show
that the two horizontal arrows

Cj/ Dp◦j/ ×D C Dp◦j/

C

are equivalences. To see that the first is an equivalence we observe first that the
vertical maps in the triangle are left fibrations, whence it is enough to show that it
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produces an equivalence on fibers. Thus we need the following. Given

C′ C′′

D

g

p

where g and h are left fibrations, we wish to show that p is an equivalence if and
only if C′d → C′′d is an equivalence of Kan complexes for all d ∈ D. To prove this it’s
easiest to prove a slightly more general result. Then we need

Lemma 55 (HTT 2.5.4.1). Given J → C → D with the map from C to D an
equivalence, then Cj/ ×C {x} → Dp◦j/ ×D {px} is an equivalence of Kan complexes
for all x ∈ C.

The following picture is good to keep in mind:

Kan fibration

left fibration right fibration

coCartesian fibration Cartesian fibration

inner fibration

Recall that an inner fibration is more of a technical condition rather than hav-
ing some homotopy invariant meaning. Each of these fibrations (except for inner
fibrations) are classified by functors to a representing object.

Example 56. Consider a functor F : [1] → Cat. Call F (0) = C, F (1) = D. From
this we can construct a categoryM = cyl(F ) := C×[1]

∐
C×{1}D which sits over [1],

M→ [1]. This cylinder construction is a map Fun([1],Cat)→ Cat/[1]. You should
think of this as the most basic example of an “unstraightening construction”. The
categories you obtain are the coCartesian fibrations over [1].

Definition 57. We say that a correspondence between two categories C and D
is a functor M→ [1] with M0

∼= C and M1
∼= D.

This construction gives us correspondences but not all correspondences arise this
way. If we consider a span E from C to D we can produce a correspondence. In
particular take the parameterized join C ?E D = C

∐
E×{0} E × [1]

∐
E×{1}D over [1].

If our fibrations in our diagram above are over C (except for the inner fibration,
say), then we get a diagram before unstraightening

Fun(C,Gpd0
∞)

Fun(C,Gpd∞) Fun(C,Gpdop
∞)

Fun(C,Cat∞) Fun(C,Catop
∞)
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Note: unstraightening is also known as the “Grothendieck construction.” In par-
ticular given F : C → Cat∞ then the fiber is just F (x) over x:

F (x) CF

{x} C

Corollary 58. Suppose we have a map C′ → C′′ of left fibrations over C, if C′ = CF
and C′′ = CG (unstraightening) with the map of fibrations being induced by a natural
transformation α sending F =⇒ G : C → Gpd∞. Then the map is an equivalence

if and only if α is an equivalence if and only if F (x)
α−→ G(x) is an equivalence i.e.

C′x → C′′x is an equivalence.

We would have to prove a lot of this stuff to prove our fact, so we will probably
take it for granted.

Principle: any construction from category theory that only uses universal prop-
erties goes through for ∞-categories.

The reason this unstraightening stuff is important because it’s generally easier
to think about functors out of things instead of fibrations. On the other hand,
fibrations (unstraightened things) are generally easier to construct.
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14. Back to topology [10/20/2017]

14.1. Finishing up homotopy invariance.

Lemma 59 (HTT 2.4.5.1). Given K
j−→ C p−→ D where p is an equivalence, we wish

to show that

Cj/ ×C {x} ' Dp◦j ×D {px},
for all x ∈ C.

Proof. We will induct on K. The base case is where K = {c}. In this case the
left hand side is MapsC(c, x) and the right hand side is Maps(pc, px). Hence we
obtain an equivalence by assumption that C ' D. For the inductive step consider
the pushout

∂∆[n] Kα

∆[n] Kα+1

f̄

f

f

Write Cα = Cjα/ ×C {x} and Dα = Djα◦p/ ×D {px}, where jα is the restriction of
j to Kα → K. Now

Cjα+1/ = Cjα/ ×∂∆[n]/
C C∆[n]/.

This implies that Cα+1 is the pullback

Cα+1 Cα

Cf Cf |∂∆[n]

Here Cf = C∆[n]/×C {x}. Now since C∆[n]/ → C∂∆[n]/ is a left fibration we find that
the bottom arrow in the square above is a left fibration. However, both the source
and the target are Kan complexes, whence the arrow is in fact a Kan fibration (this
is a lemma we will not prove—it is just a parameterized version of something we
have already proven). Draw the same diagram for D

Dα+1 Dα

Df Df |∂∆[n]

and note that by the inductive step Cα ' Dα and Cf ' Df . By induction we get
equivalences which induce an equivalence Cα+1 ' Dα+1 because the bottom arrows
are Kan fibrations. �

We will implicitly regard 1-categories as ∞-categories via the nerve.

14.2. Back to factorization homology.

Theorem 60. Let Spaces be the ∞-category of spaces and D iskn/M be the (nerve
of) category of n-disks. Then∫

M

id := colim
(
D iskn/M

id−→ Spaces
)
'M
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Definition 61. An∞-category is κ-filtered, for κ some ordinal, if for any κ-small
K together with a functor K → C, there exists a factorization

K C

K.

For some intuition recall the analogous 1-categorical definition.

Definition 62. For C an ordinary category, we say that C is filtered if

(1) for any finite set {xi} of objects there exists an x such that there is a map
xi → x for all i,

(2) and for all f, g : x⇒ y there exists h : y → z such that hf = hg.

Example 63. As a simple example consider the category of natural numbers N
with unique morphisms m→ n when m ≤ n. Condition (1) is clear and condition
(2) is trivial due to the hom-sets being (at most) one-element sets.

Example 64. If C has a final object then C is filtered.

Example 65. Consider the subposet of open subsets of M that contain a fixed
point p ∈ M , Opens(M)op

p ⊂ Opens(M)op. Notice that {p} wants to be a final
object, but it need not be open. Let’s check that this is filtered. For any finite
collection {Ui} the intersection x = ∩IUi, gives us the first condition. Now suppose
we have f, g : Ui → Uj . In this case we just let z = Uj : our category is a poset so
f = g already. Hooray.

Lemma 66. If C is filtered as a 1-category then it is filtered as an ∞-category.

To see this, notice that any category can be built as a colimit in Cat from one-
point categories.

Proof idea. Induct on K, building by coproducts and equalizers. �

Filtered categories are nice because colimits indexed by them enjoy good prop-
erties.

Lemma 67 (HTT 5.3.1.20). If C is filtered then BC ' ∗.

Recall that we are speaking model-independently—B is the left adjoint to the
inclusion Spaces ↪→ Cat∞. In particular, given a map C → X for X a space it
factors uniquely up to homotopy through the classifying space.

If we think of quasicategories, it is the left-adjoint of the inclusion Kan ↪→ QCat.
What does it do? Well it is a colimit-preserving functor, so we should describe it
on the building blocks ∆[n]. By definition ∆[n] = N•([n]) where by [n] we think of
the poset as a category. Define [n]′ to be the smallest groupoid with objects that
of [n].Wouldn’t this just be the

discrete groupoid?
As a category, [n]′ ' ∗. Recall that ∆[n] is a quasicategory but not a Kan

complex. We send ∆[n] to N•([n]′).
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15. Computing factorization homology [10/25/17]

Goette, Igusa, Williams have a theorem (in the stable range): you get all exotic
bundle structures through Hatcher’s construction. This is related to factorization
homology. Anyway, back to filtered ∞-categories.

Proof of HTT 5.3.1.20. This proof will be model-dependent. Let C be a quasi-
category. Then BC = |C|, the geometric realization. Take any finite subcomplex
K ↪→ |C|. This is represented by a map K̄ → C where K̄ is a simplicial set such
that |K̄| = K. Since C is filtered, there exists a factorization of this map through
K̄. → C. Taking geometric realizations we have

K |C|

∗ ' |K̄.|

which implies that any finite subcomplex of |C| is contractible. We conclude that
|C| is contractible. �

Theorem 68. Consider the identity functor id : Diskn → Spaces. Then∫
M

id 'M.

Proof. We use a hypercover argument. In particular, we will use without proof (for

now) that given a functor C ⊂ Opens(M)
id−→ Spaces such that BCx ' ∗ for all

x ∈M then
hocolimC id 'M.

Apply this fact to C = Diskn/M → Opens(M). We have to show thatB(Diskn/M )x '
∗. We will show that (Diskn/M )x is cofiltered. In particular, we need to show that for
any finite collection {Ui 3 x} there exists U with U → Ui. Take any U ∼= Rn ⊂ ∩iUi
containing x. Then we need to show that for any two maps Ui → Uj , there is a
map U → Ui equalizing them. But this is clear because we are in a poset so there
is only one map from Ui to Uj This is not true unless we

are looking at the image of
the n-disks.

Now, using the fact that BC ' BCop (alternatively
repeat above arguments with cofiltered and left cones), we are done by the above
lemma. �

Definition 69. We say that F : C → D and G : D → C is an adjunction if there
are natural equivalences

MapsD(Fx, y) ' MapsC(x,Gy).

Proposition 70. Left adjoints preserve colimits and right adjoints preserve limits.

Proof. The proof is the same as the 1-categorical case. Suppose we have j : J → C.
We want to verify that if colimj ' x then colimJ F ◦ j ' F (x). In other words,

given Cj/ ' Cx/ we want to show that DF◦j/ ' DF (x)/. But the maps from these
latter two to D is a left fibration whence it suffices to show that the fibers are
equivalent: for all d ∈ D,

MapsD(F (x), d) ' MapsFun(J,D)(F ◦ j, d).

By our adjunction,

MapsD(F (x), d) ' MapsC(x,G(d)) ' MapsFun(J,C)(j,G(d)).
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But
MapsFun(J,C)(j,G(d)) ' lim

z∈Jop
MapsC(jz,Gd)

and
MapsFun(J,D)(F ◦ j, d) ' lim

z∈Jop
MapsD(Fjz, d),

which are the same by our adjunction.
Notice that this is a model independent proof. �

The following is an important adjunction (of∞-categories) to keep in mind. The
singular chains C∗ : Spaces → Ch has a right adjoint G such that π∗GV is H∗V
for ∗ ≥ 0 and 0 otherwise. This comes from the adjunction between sSet and sAb
given by free abelian group and forgetful funtors. Hence C∗ preserves (homotopy)
colimits.

Notice that there exists a unique colimit preserving functor F : Spaces → V
for V any ∞-category with colimits with F (∗) = v since any space is built as a

colimit of contractible spaces. In particular, any X = colim(U j−→ Spaces) where
u 7→ ju ' ∗, which yields the same colimit as the constant diagram U → V and
F (X) = colim(U → V).

Let’s do another calculation. Consider the functor Z⊕ : Diskn → Ch sending∐
I Rn 7→ Z⊕I . Let’s calculate

∫
M

Z⊕. Notice first that Z⊕I ' C∗(
∐
I Rn). Hence∫

M

Z⊕ '
∫
M

C∗ ◦ id = colim
(

Diskn/M
id−→ Spaces

C∗−−→ Ch
)
.

Since C∗ is colimit preserving,∫
M

Z⊕ ' C∗ colim
(

Diskn/M
id−→ Spaces

)
' C∗

∫
M

id ' C∗M.

Similarly for those of you familiar with spectra, there is a adjunction of spaces with
spectra given by Ω∞ and Σ∞∗ and exactly the same proof shows that∫

M

S⊕ ' Σ∞∗ M.

Definition 71. Let Disk=1
n ⊂ Diskn be those n-disks with |I| = 1.

Now repeating the arguments of this lecture for this subcategory, we find

colim
(

Disk=1
n /M

id−→ Spaces
)
'M.

In other words, it is enough to probe manifolds with single-opens. However, all of
this seeming differential topology washes out.

Proposition 72. There is an equivalence of ∞-categories D isk=1
n /M ' M . Or as

quasicategories, D isk=1
n /M ' Sing(M).

Proof sketch. We construct a functor ev0 given by evaluation at 0 sending φ : Rn ↪→
M 7→ φ(0) ∈ M . This functor induces an equivalence on objects so it remains to
check on mapping spaces. In particular, need to check MapsD iskn/M

(Rn,Rn) '
ΩM . �

Now using that Diskn/M → D iskn/M is a localization, we find that colimM ∗ '
M .
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16. Nonabelian Poincaré duality I [10/27/2017]

Example 73. Recall we have the free En-algebra on a space Z, A = F (Z). This
functor A : Diskn → Spaces sends

U 7→
∐
i>0

Confi(U)×Σi Z
i.

Proposition 74. The factorization homology of A is∫
M

F (Z) =
∐
i>0

Confi(M)×Σi Z
i.

We will need the following lemma.

Lemma 75. The map from the homotopy colimit

colim
U∈Diskn/M

Confi(U)
∼−→ Confi(M)

is a homotopy equivalence.

Proof. We have Diskn/M ↪→ Opens(M)
Confi−−−−→ Spaces which we can look at as

Diskn/M
Confi−−−−→ Opens(Confi(M))

id−→ Spaces.

Apply our hypercover lemma to this line: we need to check that for each {x1, . . . , xi} ∈
Confi(M), Diskn/M,{x1,...,xi} has a contractible classifying space. We have already
done this in the case when i = 1. In particular, we just check that the category
is cofiltered—perform the argument before for each point. Let’s check the two
conditions: given any finite collection of Uj containing the x1, . . . , xi, there exists
U ⊂ ∩jUj (the intersection itself is not a disjoint union of disks) with U → Uj
for all j. The second condition is again trivial by the fact that our category is a
poset. �

Notice that this lemma holds for Confi(U) ×Σi Z
i, which we will use below.

Alternatively one might use the fact that products commute with colimits. In
particular colimJ Z × Fj → Z × colimj∈J Fj is an equivalence.

Proof of proposition. Formally, colimits commute so we have

colim
U∈Diskn/M

∐
i>0

Confi(M)×Σi Z
i =

∐
i≥0

colim
U∈Diskn/M

(
Confi(U)×Σi Z

i
)

'
∐
i>0

(
colim

U∈Diskn/M
Confi(U)

)
×Σi Z

i

'
∐
i>0

Confi(M)×Σi Z
i,

as desired. �

This proof is written down in the paper [AF15] of Ayala and F.
Let’s turn to a more complicated example. Recall that we have a functor

Diskn
Mapsc(−,Z)−−−−−−−−→ Spaces for Z a pointed space. We have a natural map

colim

(
Diskn/M

Mapsc(−,Z)−−−−−−−−→ Spaces

)
→ colim

(
Mfldn/M

Mapsc(−,Z)−−−−−−−−→ Spaces

)
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identifying the n-disks as manifolds. Notice that the colimit on the right hand side
has a category with a final object as its source, whence the colimit is equivalent to
Mapsc(M,Z). This leads us to the following theorem, due to Segal, Salvatore, and
Lurie, in various formulations.

Theorem 76 (Nonabelian Poincaré duality). Let M be an n-manifold and Z be
an (n− 1)-connected pointed space. Then the map defined above∫

M

Mapsc(−, Z)
∼−→ Mapsc(M,Z)

is an equivalence.The name comes from the
fact that if one takes Z to

be an Eilenberg-Maclane
space, then recover the usual

statement of Poincaré
duality.

Remark 77. Let’s see why we need the condition that π∗Z = 0 for ∗ < n. Let’s
first consider the case where Z = S0. Let’s look at the left-hand side:

colim
U∈Diskn/M

Mapsc(U, S
0) ' B(Diskn/M )

which is connected because between any two objects there is a morphism. Now let’s
look at Mapsc(M,S0) for M compact. But now Mapsc(M,S0) = Maps(M,S0) has
at least 2 components for M 6= ∅.

More formally, note that Mapsc(Rn, Z) ' ΩnZ. But using the long exact se-
quence on the homotopy groups of a fibration repeatedly, we compute

π∗Ω
nZ = π∗+nZ for ∗ > 0.

In particular, this does not depend on π∗Z for ∗ < n. So this statement could
not possibly be true because we could just change the space such that only the

< n homotopy groups change. In particular, take τ≥nZ
hofiber−−−−→ Z → Pn−1Z where

Pn−1Z is the n− 1 Postnikov stage:

Mapsc(Rn, Z) ' Mapsc(Rn, τ≥nZ).

So the functor on the left will not change, but the functor on the right can always
detect these by choosing M appropriately. This tells us that we had better choose
Z ' τ≥nZ.

Grisha: does the left hand side depend on the map M → BO(n). John: No, in
particular Diskn/M only knows about the homeomorphism type of M . Morevoer

there is a cancellation of sorts Diskn
fr
/M ' Diskn/M . Again, this is something you

can find in the paper [AF15].
We can think of both sides as functors out of Mfldn. Given a natural trans-

formation between to functors out of here, to show it is an equivalence, we might
first show that it is an equivalence on Rn, and then show that the functors sat-
isfy the same “gluing/cosheaf” properties. In particular, do these functors satisfy
something like Mayer-Vietoris?

To prove such a property, one might “filter” either Z or M . Jacob, in his book,
does the former (via Postnikov stages), while John does it by breaking down M .
We’ll be doing the latter.

Definition 78. For V a symmetric monoidal ∞-category, a homology theory
for n-manifolds valued in V is a symmetric monoidal functor

F : (Mfldn,
∐

) (V,⊗)
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such that whenever M ∼= M ′
∐
M0×RM

′′ for dimM0 = n− 1 then

F (M ′)⊗F (M0×R) F (M ′′)→ F (M)

is an equivalence.

Theorem 79. If we write the collection H(Mfldn,V) for all such homology theo-
ries, then there is an equivalence

H(Mfldn,V) AlgDiskn(V)

evDiskn

∫
−

Theorem 80. Mapsc(−, Z) and
∫
−Mapsc(−, Z) are homology theories valued in

Spaces.
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17. Nonabelian Poincaré duality II [10/30/2017]

Let V be a symmetric monoidal ∞-category such that v⊗− : V → V distributes
over all (sifted) colimits, i.e.

colim
J

(v ⊗ Fj)
∼=−→ v ⊗ colim

J
Fj

for all F : J → V. In this context we stated the equivalence above. First of all:
how do we even know that the thing on the left hand side of our excision statement,
F (M ′)⊗F (M0×R) F (M ′′), even makes sense?

Definition 81. Define M fld∂n to be the topological category with objects man-
ifolds possibly with boundary, and morphisms open embeddings. In particular,
boundaries must be sent to boundaries.

We will construct ∆op → M fldn/M given a gluing M ∼= M ′ ∪M0×R M
′′. Then,

given a functor F : M fldn → V (or into (Spaces,×)), we can define

F (M ′)⊗F (M0×R) F (M ′′) := colim
∆op

F

as a colimit over the composite. SupposeFix this diagram and M |(−1,1)
∼= M0 × (−1, 1). Here we

are using the homework fact that N ∼= N ∪∂N ∂N × [0, 1).
Fix the notation here, make

the D cal
Consider now the functor of topological categories (a bit subtle actually)

Disk∂1/[−1,1]
π−1

−−→M fldn/M

sending U ↪→ [−1, 1] 7→ π−1U .

Definition 82. We define Disk∂n to be the subcategory of M fld∂n consisting of∐
U Rn

∐
j Rn≥0. Notice it doesn’t contain the disk itself.

Lemma 83 (AF 3.11). There exists a functor ∆op → Disk∂,or1/[−1,1] which is final.

Proof. Define S ⊂ Disk∂,or
1/[−1,1] to be the subcategory of objects U ⊂ [−1, 1] such

that {−1, 1} ⊂ U and

U = [0, ε)
∐

R
∐
l
∐

(δ, 1] ↪→ [−1, 1].

This gives us a functor S → ∆op sending U 7→ π0([−1, 1] \ U), i.e. counting the
gaps (order it left to right). In fact we claim that S ' ∆op. This is an obvious
bijection on the collections of objects. We need to check that the spaces of maps

Disk∂,or
1/[−1,1]([0, ε)

∐
R

∐
i
∐

(δ, 1], [0, ε′)
∐

R
∐
i′
∐

(δ′, 1]) ' ∆([i′], [i]).

Concretely, let’s check that

Mfld∂,or
1/[−1,1](R,R) ' ∗.

But this is the homotopy pullback

Mfld∂,or
1/[−1,1](R,R) Mfld∂,or

1 (R,R)

∗ Maps(R, [−1, 1])
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by definition of∞-categorical overcategories. But the two spaces on the right hand
side are contractible, hence we obtain what we wanted. This implies the discreteness
and hence the equivalence of the mapping spaces.

Let us check that the functor is final. We use Quillen’s theorem A. In particular,

we show that B(SV/ ' ∗ for V ∈ Disk∂,or
1/[−1,1]. We have

V = [0, ε)
∐

?
∐

R
∐
i
∐

(δ, 1)
∐

?.

If V ∈ S then SV/ has an initial object whence BSV/ ' ∗. On the other hand, if
V ∈ S has neither 0 nor 1 then

V ′ = V
∐

[0, ε)
∐

(δ, 1]

is initial in SV/. Indeed, we claim that given any W ⊂ [−1, 1] and an embedding
V ↪→ W , the space of factorizations through V ′ is contractible. But this is just
that

Mfld/[−1,1]([0, ε), [0, ε
′)) ' ∗.

Hence S is final. �

Now, given M ′ ∪M0×R M
′′, and a functor F : M fldn → V, we define

F (M ′)⊗F (M0×R) F (M ′′) = colim
∆op

F

where the functor is the composite

∆op →Mfld∂,or
1/[−1,1] →M fldn → V,

which if F is symmetric monoidal then this is just a two-sided bar construction.
Sam: why did we do this construction instead of just writing it as a bar con-

struction in the first place? John: this is not just a normal simplicial object. It’s
a simplicial object in an ∞-category. Indeed, there is no functor ∆op → Mfldn/M .
We are useful a flexibility of isotopies and contractibilities to actually build this
object.

Now, if A is an n-disk algebra in V, we would like to show that
∫
−A is a ⊗-

homology theory, i.e. ∫
M ′

A⊗∫
M0×R A

∫
M ′′

A '
∫
M

A.

In fact we will prove something stronger. We will write down a pushforward formula.
Say we are given f : M → (N, ∂N) with M |int(N) → int(N) and M |∂N → ∂N fiber
bundles.

Theorem 84. Given the pushforward

f∗A : Disk∂n/N
f−1

−−→M fldn/M

∫
A
−−→ V,

there is an equivalence ∫
M

A '
∫
N

f∗A.

This will imply that factorization homology is a ⊗-homology theory.
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18. Nonabelian Poincaré duality III [11/01/2017]

We were proving a pushforward formula for factorization homology. Recall that
we have a map f : M → N ⊃ ∂N with the restriction of f to the interior and
boundary of N both being fiber bundles.

Definition 85. We define Diskf to be the limit of the diagramfix this diagram i.e. triples consisting

of k-disks U ⊂ N , n-disks V ⊂M , with V ↪→ f−1U .

Lemma 86. The map Diskf
ev0−−→ Diskn/M sending (U, V, V ↪→ f−1U) 7→ V is final.

This lemma is important because it means that the factorization homology can be
computed on Diskf . Also, looking back at this, it’s way more technical than John
remembers. . . he thought that that was his least technical paper. . . and maybe it
is—just everything he writes is incomprehensible.

Lemma 87. The map Diskn/M → Diskn/M is a localization.

Corollary 88. The map above is final, whence
∫
M
A is a colimit over either

Diskn/M or Diskn/M .

Corollary 89. For any functor A : Diskn → V,∫
M

A ' colim
(

Diskf
ev0−−→ Diskn/M

A−→ V
)
.

Theorem 90. We have the pushforward formula∫
M

A '
∫
N

f∗A

where f∗A : Disk∂k/N
f−1

−−→Mfldn/M

∫
A
−−→ V.

We have

Diskf Diskn/M V

Disk∂k/N

∗

ev0 A

q

We note that

colim
(
Diskn/M

A−→ V
)
' colim(Diskf

A◦ev0−−−−→ V).

If we call the vertical composite p, the left-hand side is just LKanp(A ◦ ev1 since
colimits are just left Kan extensions to the terminal ∞-category. But

LKanp(A ◦ ev0) ' LKanqLKanev1(A ◦ ev0).

Now we need to figure out how to evalute the left Kan extension at 1. Let’s take a
brief vacation from the proof.

The evaluation maps ev0, ev1 from the category Ar(D) to D have some nice prop-
erties. The fiber over some object d ∈ D is just the undercategory Dd/. Consider

Dd/ ↪→ Ar(D)ev0 ×D Dd/ = Ar(D)d/.
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This map is a left adjoint. The right adjoint is simple: just compose. John: check this for yourself.On the other
hand,

D/d ↪→ Ar(D)ev1 ×D D/d
is a right adjoint (again the other is given by composition). Now recall that left
adjoints are initial functors and right adjoints are final. Observe that given π :
A → D such that Ad ↪→ A/d = A×D D/d is final for any d, then

LKanπF ' colim
A/d

F ' colim
Ad

F.

Definition 91. Such a functor π is called a locally Cartesian fibration.

What we have seen above is that evaluation at 0 and 1 are locally coCartesian
and Cartesian fibrations.

Returning from our vacation (which are never as relaxing as you expect) we find
that by the Cartesian fibration property,

LKanev0
(A ◦ ev1)(U) ' colim(Diskf |U

A◦ev0−−−−→ V).

But Diskf |U = Diskn/f−1U . Hence we find

LKanev0(A ◦ ev1)(U) = colim(Diskn/f−1U
A−→ V) =

∫
f−1U

A =: f∗A(U).

But now
∫
M
A '

∫
N
f∗A, which completes the proof (using the finality of the

localization).
There is a bit of a gap here: we used the locally Cartesian fibration property.

However, really what we had was a pullback of a locally Cartesian fibration property.
Unfortunately, this property is not preserved under pullbacks. However we are ok
because we have Cartesian, not just locally Cartesian.

What’s left is two lemmas. The localization result and the finality result.

Lemma 92. The map ev0 : Diskf → Diskn/M is final.

Proof. We use Quillen’s theorem A, which says that F → D is final if B(Fd/) ' ∗
for all d ∈ D. So for any V ∈ Diskn/M we need to check that B(Disk

V/
f ) ' ∗. Recall

that ev0 is a (locally) Cartesian fibration. This means that the fiber of ev0 included
into the undercategory

Diskf |V ↪→ Disk
V/
f

is a left adjoint. Now we recall that if we are given an adjunction between C
and D by F and G. This implies an equivalence of classifying spaces BC ' BD
(just a special case of being final or initial since the classifying space functor is a
colimit of the constant functor; alternatively just look at how the unit/counit maps
give you homotopies). This implies that we can show instead that the fiber over
V , Diskf |V , has contractible classifying space. This category consists of k-disks
U ⊂ N with V ↪→ f−1U . We don’t have much time left, but the basic idea is to
use the hypercover argument. �

Yajit: how to make the “colliding points” picture of factorization homology
precise? John: consider the subcategory Disksurj

n/M ⊂ Diskn/M which is surjective on

π0. This subcategory is the exit-path infinity category of the Ran space Ran(M).
But Fun(Exit(RanM),V) are constructible cosheaves on Ran(M), and then

∫
M
A =

Γ(Ran, A).
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19. Nonabelian Poincaré duality IV [11/03/2017]

Proposition 93 (AF 2.19). The map Diskn/M → Diskn/M is a localization, i.e.
Diskn/M is the universal ∞-category under Diskn/M such that isotopy equivalences
to equivalence. More precisely, for any functor Diskn/M → C sending isotopy equiv-
alences to equivalences, there exists a unique factorization through Diskn/M .

There are two parts: a formal criterion for localizations, and a topological ar-
gument via hypercovers. Let’s look at the former. Here’s a naive guess: a functor
C → D a localization with respect to I ⊂ C if the space of objects of D = BI. If, say
I was the underlying groupoid of C (the trivial localization), then this checks out.

Moreover, for the space of morphisms take B
(
FunI([1], C

)
. Likewise for p-tuples

(not just spans). This is a sufficient condition.

Proof. We check that the space of objects is that of a localization. The rest can be
found in the paper. In particular we check that

B Funiso eq([p],Diskn/M ) ' Maps([p],Diskn/M )

for p = 0. In this case the left hand side is Diskiso eq
n/M which is just

∐
k≥0(Disk=k

n/M )iso eq

and the right hand side is the underlying groupoidDiskn/M which is just
∐
k≥0(Disk=k

n/M )0.
Change the underlying

groupoid notation.
Let’s start with the right hand side. For k = 1 it has objects Rn ↪→ M so

Disk=1
n/M ' M where we think of M as an ∞-groupoid. The functor giving the

equivalence is given by evaluation at 0 (one needs to actually check that this is a
functor). To check that it’s an equivalence we check that

Emb/M (φ : Rn →M,ψ : Rn →M) ' MapsM (φ(0), ψ(0))

= {γ : [0, 1]→M | γ(0) = φ(0), γ(1) = ψ(0)}.
The left hand side is the homotopy fiber

Emb/M (φ, ψ) Emb(Rn,Rn)

∗ Emb(Rn,M)

The top right is O(n) and the bottom right is the frame bundle of the tangent
bundle. But the homotopy fiber of the inclusion of the fiber into the frame bundle
is, by the Puppe sequence, just ΩM . That’s exactly the right hand side. This
proves it for k = 1.

For general k, the evaluation at 0 maps to the unordered configuration space
Confk(M)Σk . Apply the exact same argument as the k = 1 case. Hence

Disk0
n/M '

∐
k≥0

Confk(M)Σk .

We want to modify our hypercover argument from earlier to tell us that

colim
Disk=k,iso eq

n/M

(Rn)kΣk
∼−→ Confk(M)Σk

is an equivalence. Notice that it is important that the k’s on the left and the right

are the same. But (Rn)k ' ∗ whence the colimit is equivalent to B(Disk=k,iso eq
n/M '

Confk(M)Σk ' Disk
=k, iso eq
n/M . �
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This is a handy result which, since localizations are both final and initial, allows
us to compute factorization homology along either category.

Lemma 94 (AF 3.21). With f,M,N as in last lecture, the map Diskf → Disk/M
is final.

Proof. We use Quillen’s theorem A: show B(Disk
U/
f )U↪→M ' ∗. Notice that we have

Disk∂k/N
f−1

−−→Mfldn/M
Emb/M (U,−)−−−−−−−−→ Spaces

and as a general feature of unstraightening,

B(Disk
U/
f ) = colim

Disk∂
k/N

Emb/M (U, f−1V )

The right hand side is equivalent to ∗ since

colim
Disk∂

k/N

Emb(U, f−1V )
'−→ Emb(U,M).

Okay, so since I’ve lost basically all of you, I’ll simplify the proof and finish the
proof in the case of Embfr. We need to show that

colim
Disk∂

k/N

Embfr(U, f−1V )→ Embfr(U,M).

Replace the index category with Disk∂k/N by the proposition above. We thus need

to show that we have an equivalence

colim
Disk∂

k/N

Confπ0U (f−1V ) ↪→ open Confπ0U (M).

Now we apply the hypercover argument. Set |π0U | = K. For points {x1, . . . , xk} ∈
Confk(M), want to show B(Disk∂k/N ){x1,...,xk}) ' ∗. First we check that it’s

nonempty. Notice under f these points get sent to {fx1, . . . , fxk} ∈ Nk. We
can choose k little disks containing these images, call it V . Take the inverse image
of V and this inverse image will now contain the disk. The argument that the
category is cofiltered goes as usual.

For the non-framed case, the argument is similar, which you can find the in the
paper. �

Sam: we’re showing localization for handles of index 0. Can we do this for higher
index handles? John: If you enhance by some stratification story, yes. Otherwise
there’s an issue about convergence of the Goodwillie-Weiss tower.
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20. Factorization homology is a homology theory [11/06/2017]

John: Where is Diskn/M better than the script version? Call them A and B. For
A we can apply our hypercover lemma since A is a poset. B is better because we
have a pushforward formula coming from the fact that Diskf → Diskn/M is final.
In particular B is what is known as a sifted ∞-category, which we will talk about
later. This is not true about A.

Recall that we want to prove that homology theories for manifolds valued in V
are equivalent to n-disk algebras in V by the evaluation on the point morphism.
We will prove this using handle decompositions. Recall that a handle attachment
of index q to Wn is a map

∂Dq × Rn−q Dq × Rn−q

∂W

W W ∪∂Dq×Rq Dq × Rn−q

Theorem 95 (Smale, after Morse). Every smooth manifold can be built from the
empty n-manifold from a sequence of handle attachments.

Proof. See, for instance Milnor’s Morse theory (but you will have to fill in some
details). It might be in Milnor’s h-cobordism book. Don’t look at Smale’s paper
on it. Or any of his papers, for that matter. �

Let’s now turn to the classification of homology theories.

Proof. Given any F :Mfldn → V we have a map∫
−
F |Diskn → F

which is the counit of the adjunction between restriction (evaluation at the point)
and LKan (factorization homology). For F a homology theory we will prove that
the counit is an equivalence by induction on a handle presentation.

As a warmup, consider the case of thickened spheres: Sk × Rn−k. We wish to
prove that the map ∫

Sk×Rn−k
F |Diskn → F (Sk × Rn−k)

is an equivalence by induction on k. The base case is that of k = 0. In this case,
since F is symmetric monoidal, F (S0 × Rn) = F (Rn)⊗ F (Rn). Recall that in the
case where V is Spaces the tensor product is nothing but the Cartesian product.
Since factorization homology is symmetric monoidal (see the lemma below) the
left hand side also splits as a tensor product. This proves the base case (it also
obviously follows from the fact that the restriction of the Kan extension yields what
you started with, since S0 × Rn is an n-disk).

We now turn to the inductive step (still for the thickened sphere). Assume∫
Sj×Rn−j

F |Diskn
∼−→ F (Sj × Rn−j)
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is an equivalence for j < k. We use that we can write Sk × Rn−k = Rk+ ×
Rn−k ∪Sk−1×R×Rn−k Rk− × Rn−k. Now apply our excision result∫

Sk×Rn−k
F |Diskn '

∫
Rk+×Rn−k

F |Diskn ⊗Sk−1×R×Rn−k

∫
Rk−×Rn−k

F |Diskn

and notice that

F (Sk × Rn−k) ' F (Rk+ × Rn−k)⊗F (Sk−1×R×Rn−k) F (Rk− × Rn−k).

Applying the induction hypothesis to what we are taking the tensor product over,
and applying homotopy invariance of this tensor product (recall that it was defined
as a homotopy colimit), we obtain the desired equivalence. This completes the
proof for thickened spheres.

Now let’s turn to a general sequence of handle attachments starting from the
empty set. Inductively, we assume the counit map is an equivalence for k − 1 and
we show it for k. Look at the diagram for W above in our description of Smale’s
theorem. By the inductive hypothesis, for W with fewer than k-handles,∫

W

F |Diskn
∼−→ F (W )

and similarly for (a thickened version of) the manifold on the top left and the
manifold on the top right. Now applying the ⊗-excision principle and the induction
hypothesis concludes the proof. �

Lemma 96. For A ∈ AlgDiskn(V), the factorization homology is symmetric monoidal
if ⊗ in V preserves colimits.

Proof. Consider the composite

Diskn/MtN Diskn/M ×Diskn/N V × V V∼ A×A ⊗

Then since ⊗ preserves colimits∫
MtN

A ' colim
(
Diskn/M ×Diskn/N

⊗◦A×A−−−−−→ V
)

' ⊗ colim
(
Diskn/M ×Diskn/N → V × V

)
'
∫
M

A⊗
∫
N

A.

�

Lemma 97. For Z an n-connective pointed space, the functor Mfldn → Spaces
sending M 7→ Mapsc(−, Z) is a ×-homology theory.

Remark 98. There is an equivalence of infinity-categories, for G any topological
group,

Spaces/BG ' G− Spaces.

More generally, there is an equivalence LFibC ' Fun(C,Spaces). But we can deduce
it more directly—in more point-set terms the left hand side is considered as spaces
that are fibrations over BG and the right hand side as G-spaces where the G-action
is free. There is a map from the right to the left taking quotients, and the map
from the left to the right is taking the fiber above the distinguished point over
BG. If we omit the words fibration/free we replace quotient/fiber with homotopy
quotient/homotopy fiber. The reason this is true is that taking homotopy fibers
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preserves homotopy colimits.1 Suppose we are given a space E → BG with fiber
F . There is a map F ×G EG → E over BG. Hence we have a map of two
homotopy fiber sequences, so the LES in homotopy groups for a fibration shows us
that π∗E ∼= π∗F ×G EG. Hence every space over BG is the fiber of the quotient of
the induced action of G. Similarly for the converse: if G acts on F then the fiber
of FG → BG is just F again.

21. Nonabelian Poincaré duality VI [11/08]

Nilay: could you quickly go over again how the pushforward formula implies
⊗-excision of factorization homology? John: Sure. Choose a map M → [−1, 1]
that exhibits the decomposition of M into M ′ and M ′′ (there’s a diagram we drew
before). The pushforward formula tells us that∫

[−1,1]

f∗A =

∫
M

A

and we used finality to pass from a colimit over Disk partial or over [−1, 1] to a
colimit over ∆op to reduce to the two-sided bar construction which is precisely the
⊗-excision.

We now return to the proof of nonabelian Poincaré duality. Recall the n-disk
algebra ΩnZ := Mapsc(Rn, ), for Z an n-connective pointed space.

Proof. We just need to show that Mapsc(−, Z) is a ×-homology theory in Spaces
and then apply our classification of ⊗-homology theories to conclude that it is given
by factorization homology. In other words in suffices to prove the last lemma from
last lecture. �

Learn the 2-sided bar
construction.

Proof. Choose a decomposition M ∼= M ′ ∪M0×R M
′′. We need to show that the

natural map Mapsc(M
′, Z)×Mapsc(M

′′, Z))Mapsc(M0×R,Z) → Mapsc(M,Z). is an
equivalence. The source is the quotient by the E1-algebra, Mapsc(M0 × R, Z), in
Spaces where the structure is given by the monoidal map

Disk1
M0×−−−−−→Mfldn

Mapsc(−,Z)−−−−−−−−→ Spaces.

Observe thatM0 ↪→M is proper, whence we obtain a restriction map Mapsc(M,Z)→
Mapsc(M0, Z). Observe that this restriction map is a Serre fibration with a con-
nected base because Z is n-connective and M0 is (n − 1)-dimensional (every map
in the base is homotopic to the constant map). Let’s look at the fibers of this map.

Mapsc((M,M0), (Z,Z∗)) Mapsc(M,Z)

∗ Mapsc(M0, Z)
M0→∗→Z

However, this space of compactly supported maps of pairs is

Mapsc((M,M0), (Z, ∗)) ' Mapsc(M \M0, Z).

Recall that this is the same argument as ΩnZ ' Mapsc(int(D
n), Z). Finally, notice

that M \M0
∼= M ′ tM ′′ (shrinking collars).

1Check, for instance, that taking set-theoretic fibers preserves colimits along closed inclusions.
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Since the bottom right of the square is a connected space we find

Mapsc(M
′ tM ′′, Z)Ω Mapsc(M0,z)

∼−→ Mapsc(M,Z)

from the equivalence of ΩK−Spaces with Spaces/K for K connected (for which we

have B ' B(ΩK) and G ' ΩBG). Now, since, Ω Mapsc(M0, Z) ' Mapsc(M0 ×
R, Z) and since compactly supported maps functor sends disjoint unions to prod-
ucts, we obtain the desired result. �

This completes the proof of nonabelian Poincaré duality.
Matt: how difficult is the hypercover lemma? John: I wouldn’t think of it as

too difficult. There’s a proof in Jacob’s appendix of hypercovers. A better place to
start is Segal’s Classifying Spaces paper, which has the essential idea. Then various
glossed up versions are due to Dugger and Isaaksen.

Remark 99. Nonabelian Poincaré duality in this form is the best route to computing
H∗Mapsc(M,Z) when M is a manifold. Of course, factorization homology looks
a lot more complicated than this but on the plus side, it has a lot more handles
attached.

Example 100. Let Z = ΣnK for K connected. We know

C∗Mapsc(M,ΣnK) '
∫
M

C∗(Ω
nΣnK) = ⊕i≥0C∗

(
Confi(M)×Σi K

∧i)
since the argument is a free n-disk algebra in chain complexes. How would you do
this otherwise? Even Sam is allowed to contribute. This is a hard problem.

Sam: rational homotopy theory? John: hmm. . . okay, but that depends on
simply-connectedness and characteristic zero.

However, this result predates factorization homology, c.f. McDuff, Segal, Boedigheimer.

Remark 101. Let’s quickly look at why nonabelian Poincaré duality reduces to
Poincaré duality. Let Z = K(A, i), with i ≥ n. Consider

πj Mapsc(M,K(A, i)) ∼= [M,ΩjK(A, i)]c ∼= Hi−j
c (M ;A),

so we have cohomology on the right hand side. On the other side we have∫
M

ΩnK(A, i).

This takes some arguing that we haven’t done but I’ll tell you the end result. There
is the Dold-Kan functor followed by geometric realization DK : Ch→ Spaces sending
A[i] 7→ K(A, i). Now recall that∫

M

V ' C∗(M,V )

for a chain complex V . Set V to be A[i− n]. Hence∫
M

ΩnK(A, i) ' |C∗(M,A[i− n])|.

Nilay: what happened to orientation? John: notice that these are n-disk alge-
bras, and not En-algebras. In particular there is a nontrivial action of O(n) on
K(A, i). The Z/2 of the components of O(n) is giving us the orientation twist. In
particular, the left hand side yields the twisted homology.
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22. Commutative algebras [11/10/2017]

Exercise 102. This is Homework 11, due next Friday. Suppose we have a functor
K → Opens(X) → Top (of ordinary categories). When is the ordinary colimit
isomorphic to X? More precisely, what is the weakest condition on Kx, x ∈ X to
ensure an homeomorphism. Hint: the condition will be weaker than required the
classifying space be contractible.

Definition 103. The Hochschild homology of a dga A is the derived tensor
product A⊗A⊗AopA (the subscript tensor product is also derived). Here the A⊗Aop

module structure on A is given by the map from the derived tensor product to the
usual tensor product.

Corollary 104. Factorization homology of the circle is Hochschild homology∫
S1

A ' HH∗A.

Proof. We can write S1 = R+ ∪S0×R R− so the excisiveness of factorization homol-
ogy yields ∫ 1

S

A '
∫
R+

A⊗∫
S0×R A

∫
R−

A ' A⊗A⊗Aop A.

�

Example 105. Recall we had a functor Diskn
π0−→ Fin sending a disjoint union of

I copies of Rn to I. This yields amap

Algcom(V)→ AlgDiskn(V).

Definition 106. We say that C is tensored over Spaces if for all c ∈ C, X ∈
Spaces, there exists X � c ∈ C such that MapsC(X � c,−) ' MapsC(c,−)X . Here
Y X := Maps(X,Y ).

Exercise 107. This is homework 12. Check that X � c ' colim(X → ∗ c−→ C).
On the right we regard X as an ∞-groupoid.

Theorem 108. If A ∈ Algcom(V) then∫
M

A 'M �A

where on the right we have a tensor of A ∈ Algcom(V).

Proof. We induct on a handle presentation of M . Case 1 is when M = Rn, in which
case

∫
Rn A ' A. The right hand side is Rn�A ' ∗�A ' A. Case 1’ is when M is

a disjoint union of Rn’s, so on the left we have A⊗I . On the right we have I � A.
Notice that

Maps(I �A,−) ' Maps(A,−)I

shows that I � A is the coproduct. For instance, if we work in the case of chain
complexes, we get ⊗IA.

We want to show that

Mfldn → Spaces
−�A−−−→ Algcom(V)→ V

is ⊗-excisive. Check (M ′ � A) ⊗M0×R�A (M ′′ � A) ' M � A. In particular, it’s
enough to show by Yoneda,

MapsAlgcom
((M ′ �A)⊗M0×R�A (M ′′ �A), c) ' MapsAlgcom

(A, c)M .
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We will take it for granted that B⊗AB′ is a pushout in the ∞-category Algcom(V)
(for the 1-categorical statement see the exercise below). Applying Maps we obtain
a homotopy fiber product

Maps(M ′ �A, c)×Maps(M0×R�A,c) Maps(M ′′ ⊗A, c) ' Maps(A, c)M
′
×Maps(A,c)M0×R Maps(A, c)M

′′

' Maps(A, c)M
′tM0×RM

′′

' Maps(A, c)m ' Maps(A�A,C),

so we are done. �

Exercise 109. This is Homework 13. Show that the usual pushout in the 1-
category of commutative algebras is the two-sided tensor product you expect. No-
tice that this is a special feature of commutative algebras, not associative algebras
in general.

The∞-categorical formulation is more difficult. You prove it for coproducts and
then show that the forgetful functor of commutative algebras in V to V preserves
geometric realization.

Theorem 110. Given Z n-connected,

M � C∗Z ' C∗(Maps(M,Z)).

This makes sense because infinity-categorically, Algcom(Ch) ' AlgE∞(Ch).

Remark 111. The condition on Z can be weakened considerably, but the statement
above is good enough for our purposes.

Theorem 112 (Convergence of the Eilenberg-Moore spectral sequence). Given
a homotopy pullback diagram of spaces satisfying some conditions (say Y simply
connected for simplicity),

X ′ X

Y ′ Y

then the usual map
C∗(Y ′)⊗C∗(Y ) C

∗(X)→ C∗(X ′)

from the derived tensor product is an equivalence.

Proof. The statement is definitely true for when M = ∗. Now we have shown that

M ′ tM0×R M
′′ � C∗Z 'M ′ � C∗Z ⊗M0�C∗Z M

′′ � C∗Z

so we induct. The inductive hypothesis is that

M ′ tM0×R M
′′ � C∗Z ' C∗Maps(M ′, Z)⊗C∗Maps(M0,Z) C

∗Maps(M ′′, Z)

Apply the spectral sequence theorem above for

X ′ = Maps(M,Z) Y ′ = Maps(M ′, Z) X = Maps(M ′′, Z) Y = Maps(M0, Z)

yields the desired result. �

Sean: is there a reason to use the factorization homology definition of Hochschild
homology? John: well I never like using the old definition, because there’s no
mention of the circle, even though I don’t know a result about Hochschild homology
that I can’t do without factorization homology.

No class next Friday.
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23. Local systems and dualities [11/13/2017]

23.1. Local systems. Recall the statement about the convergence of the Eilenberg-
Moore spectral sequence from last time. This spectral sequence is given under
certain conditions. There is always a convergent spectral sequence given a diagram

B A

B′ A′ ∼= B′ ⊗B A

such thatFix these two Tor’s This is just a purely algebraic fact about dgas. Converting it into the
first spectral sequence above is just given by the statement from last time.

For a proof sketch of the statement from last time, see lecture 23 from Lurie’s
class on the Sullivan conjecture at MIT. We will follow those notes. We say that a
local system of chain complexes on Y is a functor L : Y → Ch of∞-categories.
In terms of quasicategories, it is a map Sing Y → Ch. We define the cohomology

C∗(Y, L) := limY
L−→ Ch

For L = A the constant local system, C∗(Y, L) is the usual cohomology with coef-
ficients in A because C∗(X,L) = colimY L, and we can just take linear duals.

Observe now that given f : X → Y there is a local system L0 : Y → Ch that,
heuristically, sends y ∈ Y to C∗(f−1{y}). Similarly for g : Y ′ → Y we get a localy
system L1. This yields

C∗L0 ⊗C∗Y C∗L1 → C∗(L0 ⊗ L1) ' C∗X ′

where we have used the Kunneth theorem (assume finite-dimensional cohomology
groups in each degree). We say that L is good

(1) if H∗(L(y)) = 0 for ∗ < 0 and all y ∈ Y ,
(2) and if for any L′ satisfying (1), the natural map

C∗L⊗C∗Y C∗L′ → C∗(L⊗ L′)

is an equivalence.

Now, is good? Well, of course, this is not real life so we’re good. For instance the
zero local system is good because zero equals zero. So that’s good. A less trivial
example is the constant local system with value Z, as is easy to check. The class
of good local systems is closed under extensions, i.e. if we have

L1 L

L2

such that L2 = coker(L1 → L) then if L1, L2 are good then so is L. This is because
the source and target of condition 2 preserve finite colimits.

If π1(Y ) is nilpotent and if L is finite-dimensional concentrated in a single degree
then it is a sequence of extensions by trivial π1Y -representations (this is some
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representation theory). Now induct on L→ lim←− τ
≤kL

τ≤kL A[k]

τ≤k−1L

where we are using condition 1 to have a base case (really all we need is bounded-
ness).

23.2. Spooky duality. Recall that we showed∫
M

C∗X 'M � C∗X ' C∗Maps(M,X)

where we interpret C∗X as a commutative algegbra∞-categorically, and the second
equivalence assumes some conditions on X. This coincidentally looks familiar; we
also have the statement ∫

M

C∗(Ω
nX) ' C∗Mapsc(M,X)

for X pointed n-connective, which is NAPD. Observe that if M is a closed n-
manifold, this implies that(∫

M

C∗(Ω
nX)

)∨
'
∫
M

C∗X.

This is not a coincidence! What we will talk about next is Koszul duality. It is a
general feature of n-disk algebras which generalizes this relation here.

Let’s recall how factorization homology works for manifolds with boundary.
Given a functor A : Disk∂n → V, we define∫

M

A ' colimA

as usual. Now there are two fundamental objects of V: A(Rn) and A(Rn≥0). Notice

that NAPD also works for manifolds with boundary, where ΩnX : Disk∂n → Spaces.
The same proof works verbatim—not even mutatis mutandis.

Example 113. Consider∫
Dn

ΩnX ' Mapsc(D
n, X) ' Maps(Dn, X) ' X

where Dn is the closed N -disk. In other words, taking factorization homology over
the closed n-disk is an n-fold delooping!

Notice, for future reference, that this implies

C∗X '
(∫

Dn
C∗Ω

nX

)∨
.

What happens if we do ∫
Dn

C∗X =?
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Let’s not get greedy—consider n = 1. Here the n-disk algebra sends R≥0 7→ Z and
R 7→ A for some A. Picture putting the algebra A on the interior and Z on the
boundary. But ∫

D1

C∗X ' Z⊗C∗X Z ' C∗(ΩX)

from the proof of NAPD, where we had finality of ∆op ↪→ Disk∂,or
1/[−1,1]. Using the

pushforward formula for Dn = (D1)n → Dn−1, we identify∫
Dn

C∗X '
∫
D1

· · ·
∫
D1

C∗X ' C∗(ΩnX).

What if we do it again? Given some finiteness conditions, we see that

C∗Ω
nX '

(∫
Dn

C∗X

)∨
.

In light of this example, here’s an idea: maybe there’s a functor

D : AlgDiskaug
n

(V)→ AlgDiskaug
n

(V)

such that (∫
M

A

)∨
'
∫
M

DA

when M is closed.
Matt: what does dualizing mean in a general V? John: what I’ve said will only

apply when V is stable.
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24. Koszul duality [11/15/2017]

Koszul duality is something not about algebras, but about augmented algebras.

Definition 114. We say that A is an augmented k-algebra, for k commutative, if
we are given a map A→ k of k-algebras.

In particular, the unit map composed with the augmentation k → A → k is
necessarily the identity map on k. If we now recall that a commutative algebra in
V (symmetric monoidal) is equivalent to the data of a symmetric monoidal functor

Fin
A−→ V sending I 7→ A⊗I .

Definition 115. An augmented commutative algebra in V is a symmetric

monoidal functor Fin∗
A−→ V (where the monoidal structure on finite pointed sets

is, if you like, the wedge product).

If we think of the algebra as the value of the functor A on 〈1〉∗, there is a map
A(〈1〉∗) → A(∗). This is exactly our classical augmentation. There is of course a
functor from Fin to Fin∗ so restriction along this functor is the forgetting of the
augmentation data. This yields the following definition.

Definition 116. An augmented n-disk algebra is a symmetric monoidal functor

Diskn,∗
A−→ V.

Here the domain has objects
∐

Rn t∗, and morphisms, away from the components
that they send to ∗, are embeddings. The symmetric monoidal structure is the
wedge product.

Observe that an augmented commutative algebra yields an augmented n-disk
algebra, by the usual restriction.

Notice that there is a symmetric monoidal functor

Disk∂n → Diskn,∗

sending ∐
I

Rn t
∐
J

Rn≥0 7→
∐
I

Rn t ∗.

From this observation we find that there is a restriction functor Algaug
Diskn

(V) →
AlgDisk∂n

(V), which yields

Corollary 117. For A an augmented n-disk algebra, we can define∫
M

A = colim
Disk∂n/M

A

for M a manifold with boundary.

One might say that n-disk boundary algebras are more general, so why bother
restricting when working with manifolds with boundary? The reason is because
Koszul duality applies to the augmented algebras.

Theorem 118. There exists a contravariant functor

Algaug
Diskn

(Ch)op Algaug
Diskn

(Ch)
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that on underlying objects assigns

A 7→
(∫

Dn
A

)∨
.

Here we are stating the theorem in minimal generality—what we need is that V
is stable.

Last time we saw that(∫
Dn

C∗(Ω
nX)

)∨
' (C∗Mapsc(D

n, X))
∨ ' C∗X.

Here C∗X is of course augmented. Given some (finiteness, etc.) conditions we also
saw that (∫

Dn
C∗X

)∨
' (C∗ΩnX)

∨ ' C∗ΩnX.

Exercise 119. Recall that if M is without boundary then we had∫
M

Freen(V ) '
∐
i≥0

Confi(M)×Σi V
i

It is easy to see that the free n-disk algebra on the space V is augmented. Similarly
for V ∈ (V,⊗), ∫

M

Freen(V ) '
∐
i≥0

Confi(M)�Σi V
⊗i.

For homework 14, allow M to have a boundary and let V = Ch. Show that∫
M

Freen(V ) '
⊕
i≥0

Confi(M)/∂ �Σi V
⊗i.

Here Confi(M)/∂ is the subspace of Confi(M) such that at least one point lies
in ∂M . Note also that � is the tensor with pointed spaces. Then show that for
M = Dn, ∫

Dn
Freen(V ) ' Z⊕ V [n].

Let me give you some hints. First note that the tensor X � V ' C̃∗(X) ⊗ V is
reduced chains. For i = 0 we get ∗�Σ0 V

⊗0 = Z. For i = 1 we have

Conf1(Dn)/∂ �Σ1
V ' Dn/∂Dn � V ' V [n]

since C̃∗(S
n) ⊗ V = Z[n]. What I’ve left for you for homework is to show that

Confi(D
n)/∂ ' ∗.

For future reference, what is the n-disk algebra structure on the dual of this?
We have (∫

Dn
Freen(V )

)∨
' Z⊕ V ∨[−n].

This is a general feature of Koszul duality—the dual of a free algebra is a trivial
algebra.

Add picture here
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25. The cotangent functor [11/20/2017]

Let’s think about one of the past homework problems together.

Lemma 120. We have that Confi(D
n)/∂ ' ∗ for i ≥ 2.

Proof. Note that for Nn−1 with ∂N = ∅ then

∂ Confk (N × [−1, 0))→ Confk(N × [−1, 0))

is a homotopy equivalence. We can do this by exhibiting a deformation retraction
of this map. Let me sketch how this works for the circle (see sketch in notebook).
Notice that this argument does not work for k = 0. In that case the right hand
side is a point and the left hand side is the empty set and there are no maps from
the point to the empty set. Now notice that by translating the first point to the
center Confi(D

n) ' Confi−1(Dn − {0}) (can show this by replacing Dn with Rn
and noting that Confi(Rn)→ Rn has the right fiber). �

Okay, back to Koszul duality. It is in fact more general than just the form it takes
for n-disk algebras. Recall that the way we stated it we had a contravariant functor
(
∫
Dn
−)∨ : Algaug,op

n → Algaug
n (abbreviating our notation of n-disk algebas). For

each n Koszul duality looks symmetric but in the limit where n→∞, the symmetry
is broken:

Algcomm AlgLie

Algop
n Algn

Algop
n−1 Algn−1

T

C∗Lie

Let’s explain the maps at the very top, i.e. standard Koszul duality, in two
versions. In version 1, suppose we have some algebraic structure O such that there
is a trivial algebra functor

Ch
Z⊕−−−−→ AlgO(Ch).

This functor always preserves limits because it’s a right adjoint. More explicitly

given J
A−→ AlgO(Ch)

fgt−→ Ch one shows that the limit of this composite functor has
an algebra structure. Have

lim fgt ◦A⊗ lim fgt ◦A lim fgt ◦A

lim

(
J × J (fgt◦A)⊗(fgt◦A)−−−−−−−−−−→ Ch

)
which gives us what we want. This is all to say that there exists a left adjoint
from AlgO(Ch) → Ch, call it L for the “cotangent space” at the augmentation.

Big diagram hereHence we see that L ◦ FreeO is left adjoint to fgt ◦ triv = id, which implies that
L ◦ FreeO ' id. Observe now that L sends free algebras to what they are free
on L(FreeOV ) = V . Moreover L preserves colimits. Geometrically if you think
of SpecA then the augmentation is a point A → Z and L is the cotangent space
encoding infinitesimal data near the point.
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If O is the operad for commutative algebras then FreeO(V ) = Sym(V ) = O(AV )
that is naturally augmented to Z. Then L(SymV ) = V is the usual Zariski cotan-
gent space at 0.

Theorem 121. For A an n-disk algebra,

Z⊕ LA[n] '
∫
Dn

A.

I’ll maybe only sketch this proof (the details are in my Ph.D. thesis).

Proof sketch. We have already calculated that for A = Freen(V ),∫
Dn

Freen(V ) ' Z⊕ V [n],

which followed from the fact that Confi(D
n)/∂ ' ∗ for i ≥ 2. On the other hand,

LFreen(V ) = V so ∫
Dn

A ' Z⊕ LA[n].

for A free. Thus the two agree on free algebras.
The next step is to show that∫

Dn
− : Algaug

n (Ch)→ Ch

preserves homotopy colimits of ∆op-diagrams, i.e. for any

∆op A•−−→ Algaug
n

∫
Dn−−−→ Ch

there is always a map |
∫
Dn

A•| →
∫
Dn
|A•| and this map is an equivalence. This

statement is a consequence of the fact that all reasonable functors (those appearing
above such as fgt and Free) preserve geometric realization. We have the iterated
free forget simplicial resolution (monadic?) for A and this computes |Free•nA| which
tells us that∫

Dn
A '

∫
Dn
|Free•nA| ' |

∫
Dn

Free•nA| ' |Z⊕ LFree•nA[n]| ' Z⊕ LA[n].

�

Since we have only a bit of time left let me give some intuition for why the
geometric realization is preserved.

Lemma 122. The functor ∆op → ∆op ×∆op is final (i.e. ∆op is “sifted”).

We don’t have time to prove this. Now consider the composite functor ∆op A•−−→
Alg

fgt−→ Ch which we denote by A•. We produce a multiplication on |A•|. We have

∆op → ∆op ×∆op A×A−−−→ Ch× Ch
⊗−→ Ch

sending n to An ⊗ An. Now colim(∆op → Ch) = |A ⊗ A| → |A•| By finality this

is equivalent to colim(∆op × ∆op A⊗A−−−→ Ch. But this map goes through Ch × Ch
via tensor product. Since tensor product preserves colimits this is equivalent to

colim(∆op ∆−→ Ch)⊗ colimA.
Grisha: can you do something similar for more general things like monads? John:

it’s not true in that level of generality as can be seen by the if and only if statement
in the Bar-Beck theorem.
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26. Koszul duality II [11/27/2017]

Observe the following. For K a sifted category (nonempty with the diagonal

functor final), given a diagram K A−→ Alg(V)
fgt−→ V. Then colim(K A−→ V) is an

algebra. This is because we have the composite

K → K×K A×A−−−→ V × V ⊗−→ V
and a natural transformation (via multiplication) from this composite to the functor
A. Hence we obtain a map

colim(K → K×K → V)→ colim(K A−→ V).

By finality and the fact that the ⊗ in V preserves colimits, we obtain

colim(K ×K → V × V ⊗−→ V) ' ⊗ colim(K ×K → V × V) ' colim(K → V)⊗2.

Hence siftedness is important for preserving algebraic structures.
The following more general result can be found in Lurie’s Higher Algebra, though

it is an older result.

Theorem 123. The forgetful functor fgt : AlgO(V⊗)→ V⊗ preserves sifted colimits
if ⊗ distributes over sifted colimits.

Lemma 124. The category ∆op is sifted.

We will need to recall how subdivision works for simplicial sets. Write nd[p]
or the nondegenerate simplices of [p], which is the nerve of the poset ordered by
inclusion. Clearly nd[0] = [0]. One checks that

nd[1] = 0 −→ 01←− 1.

For nd[2] one obtains the usual picture of the barycentric subdivision of the two-
simplex. A little bit of work shows that we obtain a functor nd : ∆ → sSet. We
now define the barycentric subdivision as the left Kan extension of nd:

∆ sSet

sSet

nd

In other words,
sdX := colim

∆
nd.

Lemma 125. For X a simplicial set, |X| ∼= |sdX|.

Proof sketch. I’ll leave the details for you, but the first case is when X = ∆[p].
Then check that |∆[p]| = ∆p ∼= |nd[p]|. More generally, reduce |X| to each cell and
apply the above logic. �

Lemma 126. The diagonal functor ∆op → ∆op ×∆op is final.

Proof. We use Quillen’s theorem A and show that for any [p], [q], the classifying
space

B
(

∆op ×∆op×∆op (∆op ×∆op)[p]×[q]/
)
' ∗

is contractible. This is a bit clunky but we can rewrite as showing

B
(
∆/[p] ×∆ ∆/[q]

)
=: B(∆/∆[p]×∆[q])
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by using the fact that B doesn’t care about taking opposites. Notice that

∆inj
/∆[p]×∆[q] ↪→ ∆/∆[p]×∆[q]

where the left is the subset of T − [p], T − [q] such that T − [p]× [q] is injective (for
T an element of the right), has an adjoint. This adjoint is

∆inj
/∆[p]×∆[q] ← ∆/∆[p]×∆[q]

given byFix this Hence

B(∆inj
∆[p]×∆[q] = B(∆/∆[p]×∆[q].

But the left hand side is precisely |sd∆[p]×∆[q]| ' ∗. �

So far we’ve described what the factorization homology over the n-disk has to
do with the cotangent space, but lets return to the general story.

Theorem 127 (Ayala, Francis - Poincaré/Koszul duality). For k a field, consider
A ∈ Algaug

D iskn
(Chk) such that Ā = ker(A → k) is connected (i.e. H∗Ā = 0 for

∗ ≤ 0) and HkA is finite-dimensional. Write DnA =
∫
Dn

A)∨. Then for M a
closed n-manifold, there is an equivalence(∫

M

A

)∨
'
∫
M

DnA.

We have seen this already when A is an En-enveloping algebra of a Lie algebra
or is chains on a n-fold loop spaces. The idea for the proof in general is to filter
both sides and show that the layers are the same. We will filter

∫
M
A using Good-

willie functor calculus and we will filter
∫
M

DnA using Goodwilie-Weiss manifold
calculus. In particular, one of the surprises in this context is that Goodwillie func-
tor calculus, here, is Koszul dual to Goodwillie-Weiss manifold calculus. Indeed,
we spoke to people at conferences who worked with both subjects, and they were
pretty surprised, so hopefully this isn’t obvious to you.

26.1. Goodwillie calculus.

Definition 128. A functor A : Algaug

D iskfr
n
→ Chk is i-homogeneous if there exist

Fi ∈ Chk equipped with actions of Σi on Fi such that A 7→ Fi ⊗Σi (LA)⊗i.

Definition 129. We say that F is n-excisive if it belongs to the closure of `-
homogeneous functors for ` ≤ n under all limits in Fun(Algaug

D iskfr
n
,Chk).

Definition 130. The n-excisive approximation PnF to F is the universal n-
excisive functor with a natural transformation F → PnF .

Lemma 131. Write, for A ∈ AlgEn ,(
Pk

∫
M

)
(A) =: Pk

∫
M

A.

There is a tower

Pk

∫
M

A→ Pk−1

∫
M

A→ · · · → P1

∫
M

A
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such that the fiber is given

C∗(Confk(M))⊗Σk (LA)⊗k Pk
∫
M
A

k Pk−1

∫
M
A
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27. Manifold calculus [11/29/2017]

27.1. Goodwillie-Weiss manifold calculus. Last time we gave the quickest in-
troduction to Goodwillie calculus known to mankind. Let’s now look at another
“filtration”, the cardinality filtration.

Definition 132. Consider the category Disknu
n/M which has objects n-disks embed-

ding into M where the embeddings are surjections on π0. The morphisms are the
π0-surjective embeddings. The “nu” stands for nonunital, as algebras over this will
no longer have units. This category is a (not full) ∞-subcategory of Diskn/M .

For the following it is important that our categories are ∞-categories and not
just posets.

Lemma 133. The map Disknun/M → Diskn/M is final.

Proof. Left as an exercise. �

Define Disknu,≤i
n/M ⊂ Disknu

n/M to be the subcategory of n-disks that have |I| ≤ i

components. Then we define

τ≤i
∫
M

A = colim
(
Disknu,≤i

n/M → Chk
)
.

Observe that since we can write Disknu
n/M = lim−→Disknu,≤i

n/M as a sequential colimit

and because colimits over colimits of categories are just iterated colimits (do this
abstract nonsense yourself, and note that it’s not true for limits), we find that∫

M

A = lim−→
i

τ≤i
∫
M

A

via the above lemma.
What are the layers in this filtration?

Lemma 134. For M closed, the following is a (homotopy) pushout:

τ≤i−1
∫
M
A τ≤i

∫
M
A

k Confi(M)+ ⊗Σi A
⊗i

Here we are taking the one-point compactification of the configuration space. If you
like, the bottom right can be written as twisted chains C̃∗(Confi(M)+

Σi
, A⊗i)

Proof idea. We have already shown that Disknu,=i
n/M ' Confi(M)Σi . So what we

want to study is the quotient

Disknu,≤i
n/M /Disknu,≤i−1

n/M ' Confi(M)+
Σi

and then apply some formal nonsense. �

Proposition 135. For k⊕V a trivial En-algebra the cardinality filtration splits as∫
M

k ⊕ V '
⊕
i≥0

Confi(M)+ ⊗Σi V
⊗i.
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Compare this to the case of Goodwillie calculus for free algebras where we have
a splitting ∫

M

FreeEn(W ) '
⊕
i≥0

Confi(M)⊗Σi W
⊗i

which is quite similar. By Koszul duality,

Dn(FreeEnW ) '
(∫

Dn
FreeEnW

)∨
' (k ⊕W [n])∨ ' k ⊕W∨[−n].

Proposition 136. For A with connected augmentation ideal and H∗A finite rank,
we have that (∫

M

A

)∨
'
∫
M

DnA.

Proof. We will play this proof slightly fast and loose, for lack of time. Suppose
A = FreeEnV . Then on the left we have(∫

M

FreeEnV

)∨
=
(⊕

Confi(M)⊗Σi V
⊗i
)∨

=
∏
i≥0

(
Confi(M)⊗Σi V

⊗i)∨ .
Observe now the following important fact. We always have a map ⊕i≥0Bi →∏
i≥0Bi. This is an equivalence if Bi is (for simplicity) i-connective as i → ∞

(since finite sums and finite products are the same). Recall that V is 1-connective,
whence V ⊗i is i-connective.2 Hence Confi(M)⊗V ⊗i is i-connective. Quotienting by
Σi preserves this, as colimits preserve connectivity because we have an adjunction

Ch≥ik Chk.

left

τ≥i

Now the observation above allows us to simplify, up to equivalence, the direct
product to a direct sum: ⊕

i≥0

(
Confi(M)⊗Σi V

⊗i)∨ .
We want this to be the same as∫

M

Dn(FreeEnV ) '
∫
M

k ⊕ V ∨[−n] '
⊕
i≥0

Confi(M)+ ⊗Σi (V ∨[−n])⊗i

In particular we want(
Confi(M)⊗Σi V

⊗i)∨ ' Confi(M)+ ⊗Σi (V ∨[−n])⊗i.

Let’s play with the left. The dual of a colimit is a limit so we have(
Confi(M)⊗Σi V

⊗i)∨ ' (C∗(Confi(M))⊗Σi V
⊗i)∨

'
(
C∗(Confi(M))∨ ⊗ (V ⊗i)∨

)Σi
' C∗(Confi(M))∨ ⊗Σi (V ⊗i)∨

' C∗(Confi(M))⊗Σi (V ∨)⊗i

2Recall that the definition between connected and connective is just a shift.
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using the finiteness data that we have. On the right we have, playing a little loose
(due to local coefficient issues)

C̃∗(Confi(M)+)⊗Σi (V ∨[−n])
⊗i ∼ C̃∗Confi(M)+ ⊗Σi (V ∨)

⊗i
[−ni]

∼ C̃∗ Confi(M)+ ⊗Σi (V ∨)
⊗i

[−ni]
using the norm map being an equivalence (since Confi(M) is a finite CW complex
on which the symmetric group acts freely). Finally we apply usual Poincaré duality,
to obtain the left. This proves it for the free algebra.

For details, see AF’s paper Poincaré/Koszul duality. �

Grisha: is it obvious that the Goodwillie tower converges here? John: we need
the connectedness of the augmentation ideal. Otherwise the result is false. There
is a more general result which is true, where Koszul dual of an algebra is a formal
moduli problem. There is a form of factorization homology that takes as input a
formal moduli problem. In this case all the conditions may be removed. . . notice
also that here it was vital that we worked over a field so that we might swap
connectivity and coconnectivity.
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Appendix A. Exercises

Exercise 137. Construct homotopy equivalences

Emb(Rn,Rn) ' Diff(Rn) ' GL(n) ' O(n).

Exercise 138. Show that homotopy pullbacks are homotopy invariant.

Exercise 139. Show that compactly supported maps are covariant along open
inclusions; in particular given an open inclusion U ↪→ V , the induced map of spaces
Mapsc(U,Z) → Mapsc(V,Z) is continuous. Here the topology on the mapping
spaces is inherited from Maps∗(U

+, Z).

Exercise 140. Fill in the details of the proof that hocolim is homotopy invariant.

Exercise 141. Prove that there is a homeomorphism |∆[n]| ∼= ∆n. Moreover,
show that the geometric realization |X| of a simplicial set X has the structure of a
CW complex with an n-cell for each nondegenerate n-simplex.

Exercise 142. Show ∆[n]?∆[m] ∼= ∆[n+m+1] and the corresponding statement
for horns.

Exercise 143. Fill in the proof of Proposition 1.2.4.3 of HTT. In particular, show
that φ and ψ are indeed inverse.

Exercise 144. Prove that a localization C → D of ∞-categories are both initial
and final.

Exercise 145. Show, for functors between ordinary categories, that a left Kan
extension of a functor F : C → E along a functor g : C → D is given by the formula

g!F (d) = colim
C/d

F.
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