
A BRIEF INTRODUCTION TO FACTORIZATION HOMOLOGY

NILAY KUMAR

Today we will motivate and give examples of a natural homology theory for
manifolds known as factorization homology. We will try to keep the discussion as
topological and geometrical as possible, glossing over some homotopical machinery
and being imprecise in certain places. For instance all categories should probably
be ∞-categories, but we will think of them as simplicial categories (the relevant
enrichments will generally be coming from the compact-open and smooth compact-
open topologies unless otherwise mentioned). Moreover in some places diagrams
commuting should really be diagrams commuting up to homotopy. Our references
are Ayala-Francis and the notes from John’s class in the fall (available online on
my website).

We start by recalling ordinary homology for spaces.

Definition 1. We say that a symmetric monoidal functor F : Spacesfin → Ch is a
homology theory for spaces if it satisfies excision, i.e. for any diagram of cofibrations

X ′ ←↩ X ↪→ X ′′

the resulting map of chain complexes

F(X ′)⊕F(X) F(X ′′)→ F(X ′ tX X ′′)

is a quasi-isomorphism. Denote the category of homology theories byH(Spaces,Ch).

Here the (simplicial) category of spaces is symmetric monoidal under the disjoint
union and the (simplicial1) category of chain complexes is symmetric monoidal
under the direct sum. It is a classical result of Eilenberg and Steenrod that there
is only one ordinary homology theory for each choice of coefficient object.

Theorem 2 (Eilenberg-Steenrod). There is an equivalence between homology the-
ories for spaces (in chain complexes) and chain complexes

ev∗ : H(Spaces,Ch) ↼−−−−−−−−−−⇁ Ch : C∗(· ;−)

where the equivalence is implemented by evaluation at the point and ordinary sin-
gular homology.

Remark 3. Here’s an idea as to why this is believable. Probably one of you can
take these rough notions and promote this to an actual proof. Suppose we have a
chain complex A. Suppose F is a homology theory such that F(∗) = A. What is

F(X) for X ∈ Spacesfin? Recall that any space can be written as the homotopy
colimit of its points

X = hocolimΠ≤1X ∗.

1The category Ch is naturally simplicially enriched via the presence of the cosimplicial object
C∗(∆•;Z).

1



2 NILAY KUMAR

Applying F and the excision property we obtain

F(X) ' hocolimΠ≤1X A.

Recall that a homotopy colimit can be computed as a geometric realization (an
ordinary colimit) of a simplicial object. Write the simplicial chain complex

srepn(F(X)) =
∐

x0→···→xn

Axn

where Axn
is a copy of A labelled by the point xn ∈ X. The geometric realization

is now

F(X) '
∐
n

(srepn(F(X))⊗ C∗(∆n;Z)) / ∼

where we have used the simplicial enrichment of Ch. Intuitively speaking, we are
gluing copies of singular chains on simplices with coefficients in A according to the
structure of X. This should yield F(X) ' C∗(X;A).

Notice that singular homology does of course make sense for manifolds. The
properties that distinguish manifolds from general spaces, however, are not clearly
evident in the definition of singular homology. One crucial point is that an n-
manifold is built out of Rn, whereas spaces in general are built out of points with no
finer structure. Hence in a homology theory for manifolds we expect the Euclidean
spaces to play a prominent role. Moreover we expect the excision property to
be different, as we tend to cut manifolds along “collars.” We offer the following
temporarily vague definition of a homology theory for n-manifolds.

Definition 4. Let Mfldn denote the category of n-manifolds (with some reasonable
finiteness conditions) with embeddings. The category of homology theories for n-
manifolds valued in a symmetric monoidal category V is the full subcategory

H(Mfldn,V) ⊂ Fun⊗(Mfldn,V)

of symmetric monoidal functors satisfying ⊗-excision along collar-gluings, i.e. if
M ∼= M ′ ∪M0×R M

′′ then the canonical morphism

F(M ′)⊗F(M0×R) F(M ′′)→ F(M)

is an equivalence in V.

The central result of Ayala-Francis is the existence and uniqueness of a homology
theory for manifolds (à la Eilenberg-Steenrod) known as factorization homology.

Theorem 5 (Ayala-Francis). There is an equivalence between homology theories
for manifolds in V and n-disk algebras in V,

evRn : H(Mfldn,V) ↼−−−−−−−−−−⇁ AlgDiskn(V) :

∫
where the equivalence is implemented by evaluation at Rn and factorization homol-
ogy.

Ayala-Francis point out that a significant difference between the story for mani-
folds and spaces is that now the characterization in terms of V alone is replaced by
the of n-disk algebras in V. In other words, factorization homology is a machine
that takes in an n-disk algebra and spits out a homology theory for manifolds.
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We will not say anything here about the proof of this result but instead we will
provide definitions and examples of n-disk algebras and computations of factoriza-
tion homology in certain simple cases. One of the main corollaries of the above
result is a vast generalization of Poincaré duality, which we will discuss below.

We begin with the definition of an n-disk algebra. Actually the theorem above
already hints at what the definition should be: the restriction of any symmetric
monoidal functor to the subcategory of Mfldn consisting of disjoint unions of Rn

completely determines the homology theory.

Definition 6. Define Diskn to be the full subcategory of Mfldn where the objects
are finite disjoint unions of standard Euclidean spaces

∐
I Rn. An n-disk algebra

in a symmetric monoidal category V is a symmetric monoidal functor Diskn → V.

Let’s look at a few examples of n-disk algebras. The first example we use to give
intuition on the algebraic structure of an n-disk algebra.

Example 7 (Commutative algebras). Recall that a commutative dg algebra is a
symmetric monoidal functor A : Fin → Ch from the category of finite sets under
disjoint union to the category of chain complexes under tensor product. There is a
natural symmetric monoidal functor

π0 : Diskn → Fin

tIRn 7→ π0(tIRn) = I.

Precomposing with π0 now yields an n-disk algebra given any commutative dg
algebra for all n. In other words every commutative dg algebra is an n-disk algebra
for any n.

The idea here is that in an n-disk algebra there is not just one way of multi-
plying things — instead there are Emb(Rn t Rn,Rn) ways of multiplying. In this
example we see that applying π0 remembers these various multiplications only up
to homotopy leaving us with only the unique map from the two-point set to the
one-point set.

The next example is the main object of study in nonabelian Poincaré duality.

Example 8 (n-fold loop spaces). Let (Z, ∗) be a pointed space. The n-fold
loop spaces of Z yield n-disk algebras ΩnZ in Spaces (or by postcomposing with
C∗(−;Z), in Ch) as follows. Recall that for M a space and Z a pointed space we say
that a map M → Z is compactly supported if thee exists K ⊂M with K compact
and such that g|M\K = ∗ ∈ Z. Then we define

ΩnZ := Maps
c

(−, Z) : Diskn → Spaces.

Notice that compactly supported maps does indeed yield a contravariant functor
(and that disjoint unions are taken to products). What does this have to do with
the n-fold loop space? Notice that

ΩnZ = Maps ((Dn, ∂Dn), (Z, ∗)) ' Maps
c

(Rn, Z),

where we identify Rn with the interior of the closed disk Dn.

For two more interesting examples (free n-disk algebras and n-disk enveloping
algebras of Lie algebras) we refer to the online notes.
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As we have all heard about En-algebras, certain classes of less commutative
algebras, and seen the examples above in that context, let us say a few words as to
the relation between n-disk algebras and En-algebras.

Definition 9. We define the category Diskrect
n to be the category consisting of finite

disjoint unions of open unit disks tiDn with morphisms rectilinear embeddings. An
En-algebra in V is a symmetric monoidal functor Diskrect

n → V.

Recall that a rectilinear embedding is an embedding which can be written as a
composition of translations and dilations. The main distinction between n-disk and
En-algebras is that n-disk algebras carry extra data about the automorphisms of
Rn. Rigidifying this data away by using framed embeddings (suitably homotopically
defined) yields an equivalence of structures.

Lemma 10. There is an equivalence Diskfrn → Diskrectn .

We refer to the notes for more details.

Exercise 11. Check that E1-algebras are, in a suitable sense, equivalent to asso-
ciative algebras.

With these basic examples of gadgets that we will take as our coefficients in hand,
we turn to the definition of factorization homology. We first need the category of
n-disks in M .

Definition 12. Let M be an n-manifold. Define the category Diskn/M to consist
of n-disks together with embeddings into M , with morphisms (homotopy) commu-
tative triangles.

We can now define factorization homology as a homotopy colimit (or left Kan
extension).

Definition 13. Let M be an n-manifold and A : Diskn → V be an n-disk algebra.
Then the factorization homology of M with coefficients in A is∫

M

A := hocolim
(

Diskn/M → Diskn
A−→ V

)
∈ V.

Remark 14. Intuitively, factorization homology is a local-to-global machine. An
n-manifold is built out of Rn’s and an n-disk algebra assigns an object of V to
each of these Rn’s. Taking the homotopy colimit (or left Kan extension) is simply
gluing these objects together in V using the blueprint that describes how M is glued
together from Rn’s.

To make this intuition concrete consider the very simple n-disk algebra valued
in Spaces:

id : Diskn → Spaces

tIRn 7→ tIRn.

We present our first computation of factorization homology.

Theorem 15. Consider the identity functor id : Diskn → Spaces. Then∫
M

id 'M.

The proof is rather nontrivial so we will say nothing about it here.
The next computation is a formal consequence of the previous theorem.
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Corollary 16. Consider the n-disk algebra valued in Ch,

C∗(−;Z) : Diskn → Ch

tIRn 7→ C∗(tIRn;Z) ' Z⊕I .

This is often called a trivial n-disk algebra. Then∫
M

C∗(−;Z) ' C∗(M ;Z),

i.e. the factorization homology of M with coefficients in the trivial n-disk algebra
Z computes the singular homology of M .

Proof. Recall that the functor C∗(−;Z) : Spaces → Ch has a right adjoint G such
that π∗GV is H∗V if ∗ ≥ 0 and 0 otherwise. This is of course coming from the
adjunction between simplicial sets and simplicial abelian groups, given by the free-
forget functors. Hence C∗(−;Z) preserves homotopy colimits. Since homotopy
colimits commute with homotopy colimits,∫

M

C∗(−;Z) ' C∗
(∫

M

id;Z
)
' C∗(M ;Z)

by the theorem above. �

For another simple example that lines up with our intuition notice that Diskn/Rn

has a final object. We thus obtain the following.

Proposition 17. Let A : Diskn → V be an n-disk algebra. Then the factorization
homology of Rn with coefficients in A is just A again∫

Rn

A ' A.

As trivial as this computation may seem, we can now reconstruct a famous
homology theory for associative algebras as factorization homology using a two-line
argument.

Proposition 18. Let A : Disk1 → V be an associative algebra in a symmetric
monoidal category. Then the factorization homology of the circle with coefficients
in A is ∫

S1

A ' HC∗(A),

the Hochschild homology of A.

Proof. We use the fact that factorization homology is ⊗-excisive. Write

S1 ∼= R ∪RtR R

decomposing the circle as hemispheres. Then∫
S1

A '
∫
R
A⊗∫

S0×R A

∫
R
A ' A⊗A⊗Aop A ' HC∗(A).

Here we are using the previous proposition (and being closed-mouthed about the
role of orientations). �

Remark 19. Notice that in the factorization homological construction of Hochschild
homology the role of the circle is crystal clear. Not so for most definitions!
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Another broad class of n-disk algebras was those that were actually commutative
algebras. It turns out that commutative algebras, which are n-disk algebras for all
n, are rather poor coefficients for homology theories for manifolds. In a sense they
are too simple to remember that our manifold was more than just a topological
space. More precisely, we have the following.

Theorem 20. Let A : Diskn → V be a commutative algebra. Then∫
M

A ' Copow(M,A),

i.e. the factorization homology of M with coefficients in A is the copowering (also
known as tensoring) of the commutative algebra A with the underlying space of M .

Hopefully the above results emphasize the local-to-global nature of factorization
homology. Its power, however, becomes especially apparent if we take as coefficients
an n-fold loop space. The computation of the resulting factorization homology is
known as nonabelian Poincaré duality.

Theorem 21 (Salvatore, Segal, Lurie, Ayala-Francis). Let M be an n-manifold
and Z be a pointed (n− 1)-connected space. Then the canonical map∫

M

ΩnZ
∼−→ Maps

c
(M,Z)

is an equivalence of spaces.

In other words, the factorization homology of a compact manifold M with coef-
ficients in the n-fold loop space of a pointed (n − 1)-connected space Z computes
the mapping space Maps(M,Z).

Remark 22. This result specializes to Poincaré duality between twisted homology
and compactly support cohomology. Suppose Z = K(A, i) is an Eilenberg-MacLane
space for i ≥ n. The theorem yields an equivalence of spaces∫

M

Maps
c

(−,K(A, i)) ' Maps
c

(M,K(A, i)).

Taking homotopy groups on the right,

πj Maps
c

(M,K(A, i)) ∼= [M,ΩjK(A, i)]c ∼= Hi−j(M ;A).

To unpack the left, recall that the Dold-Kan functor (followed by geometric real-
ization) takes A[i] 7→ K(A, i). Recall that the factorization homology of M with
coefficients in the trivial n-disk algebra on the chain complex V computes C∗(M ;V ).
Now since ΩnK(A, i) ' K(A, i− n) we find that∫

M

ΩnK(A, i) '
∣∣∣∣∫

M

A[i− n]

∣∣∣∣ ' |C∗(M,A[i− n])|.

Hence on the left we have (shifted) homology.
One might object that the twist by orientation has not made an appearance

here. The point is that we are working with n-disk algebras, not En-algebras. In
particular there is a nontrivial action of O(n) on K(A, i) and the Z/2 coming from
the components of O(n) is giving us the orientation twist. In particular the left
actually gives us twisted homology.
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The proof of nonabelian Poincaré duality is relatively straightforward given the
characterization of factorization homology as the unique homology theory for man-
ifolds.

Proof of nonabelian Poincaré duality. By Ayala-Francis lemma 4.5, Mapsc(−, Z)
is a homology theory for manifolds valued in Spaces. The connectivity conditions
on Z are used in the proof of this lemma. The Ayala-Francis characterization
for homology theories for manifolds now implies that Mapsc(−, Z) is equivalent
to factorization homology with coefficients in Mapsc(Rn, Z). But Mapsc(Rn, Z) '
ΩnZ, whence ∫

M

ΩnZ ' Maps
c

(−, Z).
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