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Bousfield localization with respect to homology is, roughly speaking, a way to
replace a space X by some X̃ such that the spaces are homology-equivalent for
some generalized homology theory h∗ but X̃ is “local”. The space X̃ loses some
homotopical information that X had, but it retains the h∗-accessible parts. The
idea that such a construction might be useful is not so surprising. Recall Serre’s
mod C theory, which studies homotopy and homology up to a class C of groups,
as well as what I talked about last time: Quillen’s rational homotopy theory, in
which we studied spaces only up their rational weak equivalences. Indeed, the
Bousfield localization of with respect to ordinary rational homology turns out to
be the rationalization of the space.

The main results of this paper are twofold. Let h∗ be a generalized homology
theory. Then

(a) there exists a model structure on Spaces∗ with weak equivalences being maps
inducing isomorphisms on h∗ and cofibrations as usual, with fibrations satisfy-
ing the right lifting property.

(b) for each X ∈ hSpaces∗ there is an h∗-localization X → X̃ such that when

h∗ = H∗(−, R) for R ⊂ Q or R = Zp, X̃ has h∗-local homotopy.

We will not discuss the proof of (a) other than to mention that there are some
set-theoretic issues that need to be dealt with.

1. Localization with respect to h∗

Let us start with some generalities on localization. Let C be a category with a
distinguished class of morphisms W ⊂ Mor C.
Definition 1. We say that an object D ∈ C is W-local if for any map w : X → Y
in W the induced map w∗ : Hom(Y,D) −→ Hom(X,D) is a bijection. In other
words, D is W-local if the functor Hom(−, D) sends W to isomorphisms in Set. A
W -localization of an object A ∈ C is map f : A→ D with D W-local and f ∈ W.
Notice that if A is already W-local then f is an isomorphism.

Example 2. The following is a useful example to keep in mind. Consider the
category Ab of abelian groups with W the class of maps A→ B such that A⊗Q→
B⊗Q is an isomorphism. One can check that for any abelian group D, the natural
map f : D → D ⊗Q is the W -localization of D.

Lemma 3. Suppose each object of C has a W -localization. Then there is a W -
localization functor L : C → C and a natural transformation η : idC → L such
that ηA : A→ LA is a W -localization for each A ∈ C. Moreover, the data of (L, η)
is unique up to natural isomorphism.
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It is not hard to see that the localization functor is idempotent, i.e. that ηLX is
an isomorphism for all X.

Let

h∗ : hSpaces∗ → grAb

be a generalized homology theory. We will denote by W the class of morphisms in
Spaces∗ inducing isomorphisms on h∗ but use the terminology h∗-local instead of
W-local.

Theorem 4. Each object of hSpaces∗ has an h∗-localization.

In other words, for any space X, there exists a map f : X → X̃ such that f in-
duces isomorphisms on homology h∗ and for any g : A→ B inducing isomorphisms
on h∗ the pullback map [B, X̃]→ [A, X̃] is a bijection.

Before we give and idea of how this is proved, we introduce the following useful
notion.

Definition 5. We say that W admits a calculus of left fractions if:

(i) W is closed under (finite) compositions and contains the identities of C;
(ii) given X2

w← X1
f→ X3 with w ∈ W, there exists X2

g→ X4
v← such that v ∈ W

and vf = gw : X1 → X4;

(iii) given X1
w→ X2

f
=⇒
g

X3 with w ∈ W and fw = gw there exists X3
v→ X4

such that v ∈ W and vf = vg.

In this case we obtain a characterization of local objects.

Lemma 6. If W admits a calculus of left fractions, and D ∈ C, then the following
are equivalent:

(i) D is W-local;
(ii) each map X → Y in W induces a surjection Hom(Y,D)→ Hom(X,D);
(iii) each map D → Y in W has a left inverse.

Proof idea. Let us suppose that the hard work has been done for us and that we
know there exists a model structure on Spaces∗ in which the cofibrations are the
usual but the weak equivalences are h∗-weak equivalences (maps in W). Then
any map X → Y factors as X ↪→ Z � Y , where the first arrow is an h∗-acyclic
h∗-cofibration and the second arrow is an h∗-fibration. We can in particular take
Y = ∗, which yields Z an h∗-fibrant space that is h∗-weak equivalent to X.

It remains to show that Z is h∗-local. We use the fact that the class of h∗-
equivalences admits a calculus of left fractions in hSpaces∗ (a result observed by
Adams). Then, by the above characterization of h∗-local objects, it suffices to show
that the map [B,Z]→ [A,Z] given by pulling back along any w ∈ W is a surjection,
i.e. for each f : A→ Z there exists a dashed map making the diagram

A Z

B ∗

w

f

commute. We may assume that w is furthermore an h∗-cofibration for the following
reason. There exists a space C such that we have A ↪→ C � B with the first map a
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cofibration and the second map an acyclic fibration (in the usual sense, not an h∗-
fibration!), though we won’t need the fact that it is a fibration. This induces maps
of sets [B,Z] → [C,Z] → [A,Z] where the first map is a bijection since C � B is
acyclic. Hence to prove that the composite is surjective it suffices to prove that the
second arrow is surjective. We thus obtain a diagram

A Z

C ∗

v

f

where v is an h∗-cofibration by construction (because the h∗-cofibrations are pre-
cisely the usual cofibrations) and is also in W because C → B and the composite
A → B are. Hence we may assume that w is an h∗-acyclic h∗-cofibration whence
the result follows by the model category structure described above. �

2. an algebraic criterion

Now that we know every pointed space has an h∗-localization, we ask what h∗-
localization does to homotopy. The case that concerns is that of ordinary homology
H∗(−, R) where either R = Z/pZ = Zp or R = Z[J−1], which is the subring of the
rationals with a set of primes J inverted.

We will take h∗ and R as such for the remainder of this talk.

Theorem 7. Let X be a connected pointed space. Then X is H∗(−, R)-local if and
only if πnX is an HR-local group for n > 1 and πnX is an HZ-local π1X-module
for n > 2.

Definition 8. Let HR be the class of maps α : G → H of groups such that
α∗ : Hi(G,R) → Hi(H,R) is an isomorphism for i = 1 and a surjection for i = 2.
Here Hi(G,R) is the group homology of G with coefficients in R where G acts
trivially on R.

Fix a group π. Let HZ be the class of maps α : M → N of left π-modules such
that α∗ : Hi(π,M) → Hi(π,N) is an isomorphism for i = 0 and a surjection for
i = 1.

Lemma 9. Every group has an HR-localization and every π-module has an HZ-
localization.

Example 10. Let G be a group and G = Γ1G ⊃ Γ2G ⊃ · · · be its lower central
series. Suppose R ⊗ (ΓnG/Γn+1G) = 0 for some n > 1. Then the HR-localization
of G is:

(i) for R = Z[J−1], the map G→ Z[J−1]⊗ (G/ΓnG);
(ii) for R = Zp, the map G→ Ext(Zp∞ , G/ΓnG).

In particular, if G is abelian, then for the first case we obtain G→ Z[J−1]⊗G.

Before I sketch the proof for groups I will state two lemmas that form the tech-
nical heart of the paper.

Lemma 11. Let X be a connected pointed space and α : π1X → G a map of groups.
Then α ∈ HR if and only if there exists a homology equivalence f : X → Y with
f∗ : π1X → π1Y equal to α.
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Lemma 12. Let X be a connected pointed space and α : πnX → M be a map
of π1X-modules for n > 2. Then 1 ⊗ α : R ⊗ πnX → R ⊗M is in HZ if and
only if there exists a homology equivalence f : X → Y with f∗ : πjX → πjY an
isomorphism for j < n and f∗ : πnX → πnY equal to α.

Proof sketch of Lemma 9. Let us sketch the proof for the case of groups. It suffices
to show that if f : X → D is an H∗(−, R)-localization (with X connected) then
f∗ : π1X → π1D is an HR-localization. Applying the existence of H∗(−, R)-
localization to the space K(G, 1) proves the result.

By Lemma 11 we know that f∗ ∈ HR so it suffices to show that π1D is local.
Now, it turns out that HR admits a calculus of left fractions in the category of
groups, whence it suffices by an earlier lemma to show that any map w∗ : π1D → H
in HR has a left inverse. Again by Lemma 11 there exists a homology equivalence
w : D → Y for some space Y with π1Y = H. But because D is H∗(−, R)-local, w
has a left-inverse which induces a left inverse for w∗.

The proof of existence of HZ-localizations of modules is more complicated. �

Let us say that a space is algebraically H∗(−, R)-local if πnX is HR-local as a
group for n > 1 and πNX is an HZ-local π1X-module for n > 2. We wish to show
that these two conditions are equivalent. We will use the following two lemmas,
after which the theorem becomes straightforward.

Lemma 13. Let X,Y be connected pointed spaces that are algebraically H∗(−, R)-
local. If f : X → Y is a homology equivalence then f is an equivalence.

Proof sketch. By Lemma 11, the map f∗ : π1X → π1Y is in HR, so since π1X,π1Y
are local, f∗ is an isomorphism. Now one can inductively apply Lemma 12 to show
that f induces isomorphisms on higher homotopy groups. �

Lemma 14. For each connected pointed space X there exists a homology equiva-
lence f : X → Y such that Y is algebraically H∗(−, R)-local.

Proof sketch. The group π1X has an HR-localization π1X → G by Lemma 9 above.
By Lemma 11 there exists a homology equivalence f1 : X → Y1 realizing the HR-
localization on fundamental groups. Similarly one obtains a homology equivalence
f2 : Y 1 → Y 2 by invoking Lemma 12 on the HZ-localization of π2Y

1. Repeating
this for higher homotopy groups, we take Y to be the homotopy colimit of Y 1 →
Y 2 → Y 3 → · · · , and we obtain a map X → Y with the desired properties. �

Proof of 7. Suppose X is a connected pointed space that is algebraically local.
Then, since the class of homology equivalences admits a calculus of left fractions, to
prove that X is H(−, R)-local it suffices to prove that every homology equivalence
X → Y in hSpaces∗ has a left inverse. By Lemma 14 there exists a homology
equivalence Y → Z in hSpaces∗ with Z algebraically local. Now the composition
X → Y → Z, by Lemma 13, is a weak equivalence, which proves the claim.

Conversely, suppose X is H(−, R)-local. By Lemma 14 there exists a homology
equivalenceX → Y such that Y is algebraically local. By the previous paragraph, Y
is H(−, R)-local, whence X → Y is a homology equivalence between H(−, R)-local
spaces, implying that X is homotopy equivalent to Y . This proves the claim. �

In a sense, these results are quite remarkable – one can always find an h∗-local
replacement for any (connected) space X, and in the case of ordinary homology
(with reasonable coefficients) there is a completely algebraic detection criterion
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for locality. As for applications, localization turns out to be interesting in the
following sense: if Xp is the H∗(−,Z/pZ)-localization of X and XQ is the H∗(−,Q)-
localization (rationalization) of X, then

X
∏

pXp

XQ (
∏

pXp)Q

is a homotopy pullback square. In other words, the homotopy type of X is uniquely
determined by the homotopy types of its localizations. This is known as a “fracture
theorem” and is originally due to Sullivan.
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