
DIFFERENTIAL FORMS ON B•G

NILAY KUMAR

Abstract. We begin by recalling basic notions around differential forms on

simplicial manifolds. The main object of study is the complex Aq(B•G) of

q-forms on the classifying space of a compact Lie group G. We compute the
cohomology of this complex, following a paper of Bott’s, and discuss as time

permits some applications and extensions. (These notes were prepared for

John Francis’ seminar course in the spring quarter of 2019 at Northwestern.)

1. Simplicial manifolds

Write ∆ for the simplicial indexing category and Mfld for the category of finite-
dimensional smooth manifolds (without boundary).

Definition 1. A simplicial manifold X• is a functor X : ∆op → Mfld. A map
of simplicial manifolds is a natural transformation of functors, and the resulting
category is denoted sMfld.

Example 2. Here are a few standard examples of simplicial manifolds:

(1) First, two trivial examples. If X• is zero dimensional in each degree, we
obtain a simplicial set. If X• is given by a fixed manifold M in each degree
with the structures maps all the identity, we obtain just a smooth manifold
M .

(2) Let G be a Lie group. Then we obtain B•G given

BnG = Gn

where face maps are given by multiplication (except for the first and last,
which are given by projection) and degeneracy maps are given by insertion
of the identity.

Similarly we obtain the universal G-bundle over B•G,

EnG = Gn+1

whose faces maps are given by forgetting a factor and degeneracy maps are
given by repeating a factor. G acts on E•G diagonally on the right and we
obtain a projection EnG→ BnG,

(h0, . . . , hn) 7→ (h1h
−1
0 , . . . , hnh

−1
n−1).

(3) Given a Lie groupoid G we obtain a simplicial manifold by applying the
usual nerve construction for groupoids. For instance B•G is obtained as
the nerve of the one-object Lie groupoid G and E•G is obtained from the
translation groupoid, which is the action groupoid for the translation action
of G on itself (from the left, say).
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(4) We might think of B•G as a delooping for the Lie group G. More generally,
given a simplicial Lie group G• there is a principal G•-bundle W•G→ W̄•G
modelling the universal bundle over the delooping of G•.

Let me give some motivation for the introduction of simplicial manifolds. As
simplicial manifolds are in particular simplicial topological spaces, it is not surpris-
ing that the novelty in studying simplicial manifolds comes from applications where
the smooth structure is of interest.

Consider, for example, the Chern-Weil approach to characteristic classes. Given
a complex vector bundle π : E →M one obtains the Chern classes of E by choosing
a connection ∇ on E and then taking the trace of a certain polynomial in the
curvature F∇ ∈ Ω2(M). Changing the connection modifies the resulting form by an
exact form (the differential of an expression involving the Chern-Simons secondary
invariant) whence the de Rham cohomology class is independent of this choice.
From a topological perspective, this cohomology class should be pulled back from
an appropriate classifying space along a map classifying the vector bundle. One
would like to lift this to a chain level statement but the classifying space is not
a manifold in general and thus does not obviously support differential forms, let
alone universal Chern-Weil forms. Such a lift to the de Rham complex was first
constructed by Shulman in his Berkeley thesis, and roughly imitates the Chern-Weil
construction for the simplicial G-bundle E•G→ B•G.

Another motivation comes from physics. In many quantum field theories the
numerical invariants calculated by path integral methods fail to make sense, even at
a physical level of rigor, due to the presence of what are called anomalies. Roughly
speaking the presence of an anomaly signifies that the integrand is not a function
but instead a section of a non-trivial line bundle. This was first made precise
in an example by Quillen and then generalized by Bismut and Freed. Often the
anomaly can be “trivialized” by further geometric constraints on the underlying
spacetime manifold such as a spin structure. For some string theories the anomaly
is trivialized by a string structure on spacetime. The string group is a 3-connected
cover of the spin group but is a priori defined only as a topological group. Promoting
the string group to some sort of smooth object is not so easy; if one wants to stay
in the world of finite-dimensional manifolds, one is forced to view it as a 2-group: a
simplicial manifold satisfying certain horn-lifting properties. Much more generally,
it is interesting to ask for an analog of Lie’s third theorem for L∞-algebras. The
“Lie group” corresponding to a given L∞-algebra is naturally a simplicial Banach
manifold.

Finally, as less of a motivation and more of a categorical outlook, I would like
to mention that Kan simplicial manifolds offer relatively concrete and hands-on
representatives for (nice enough) smooth stacks. Two Kan simplicial manifolds are
to be considered equivalent as smooth stacks if they are connected by “hypercovers.”
These are maps of simplicial manifolds that generalize the augmentation of the
Cech nerve of a good open cover. That such maps should be equivalences is already
evident in the definition of a smooth manifold via atlases.

With these remarks in mind, let us turn to the notion of differential forms on
simplicial manifolds.
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Definition 3. Let X• be a simplicial manifold. The de Rham complex of X• is
the cosimplicial cochain complex given as the composition

A∗X : ∆
X•−−→ Mfldop A∗(−)−−−−→ Ch(VectR).

For a fixed q ≥ 0 in particular we obtain a cosimplicial vector space of q-forms on
X,

AqX : ∆→ VectR.

As usual there is a functor

N : cCh(VectR)→ Ch(Ch(VectR))

that assigns to a cosimplicial cochain complex the corresponding normalized double
complex. Now to a double complex we can assign its total complex: we will often
abuse terminology and refer to this complex as the de Rham complex of X•.

Example 4. Here are the two most basic examples:

• If X• is zero-dimensional, i.e. just a simplicial set, then the de Rham com-
plex A∗X is precisely the simplicial cochain complex of X• with coefficients
in R.
• If X• = X is the constant simplicial object on X ∈ Mfld then A∗X is

(quasi-isomorphic to, unless one took the normalized complex) the usual
complex of differential forms on X.

Remark 5. There is a product on the de Rham complex of a simplicial manifold
coming from the wedge product of differential forms that turns out not to be com-
mutative on the nose – instead, it gives the de Rham complex the structure of a
C∞-algebra. The homotopy coherent nature of the multiplication is not surprising
given the first example above.

As we noted earlier, a simplicial manifold is naturally a simplicial topological
space. Thus we obtain a functor

| − | : sMfld→ Spaces

given by first taking the underlying simplicial space and then taking the geometric
realization.

Theorem 6 (Bott-Shulman-Stasheff). The simplicial de Rham complex computes
the ordinary singular cohomology of the geometric realization of X•:

H∗(A∗(X•)) ∼= H∗(|X•|;R).

2. Bott’s argument

In this section we focus on q-forms on the simplicial manifold B•G. Recall that
Aq(B•G) is a cosimplicial vector space to which we assign the associated normalized
complex. Following Bott, we will compute the cohomology of this complex; I thank
Ezra Getzler for explaining this proof to me.

Theorem 7 (Bott ’73). Let G be a compact Lie group and q be a non-negative
integer. Then

Hi(Aq(B•G)) ∼=

{
Symq(g∨)G i = q

0 i 6= q

The proof of this result has three ingredients:
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(1) Aq(B•G) can be obtained as the basic q-forms on the universal principal
G-bundle E•G

(2) by compactness of G, the cosimplicial G-module A0(E•G) admits an extra
(G-invariant) codegeneracy

(3) the first (nonadditive) derived functor of the exterior power functor Λq is
a q-fold shift of the symmetric power functor Symq.

Before we start the proof, let me mention a result that we will use without further
mention, whose proof follows by existence of averaging.

Lemma 8. For G compact, the functor of invariants (−)G commutes with cochain
cohomology for cochain complexes of G-modules (over R).

Let’s start with the first step. Instead of working with differential forms on
the classifying space B•G, we will work on the total space, which affords greater
flexibility.

Proposition 9. Let π : P →M be a smooth principal G-bundle. Then the pullback

Aq(M)
π∗

−→ Aq(P )

induces an isomorphism of Aq(M) onto the subspace Aqbasic(P ) of basic q-forms on
P . Recall that ω ∈ Aq(P ) is basic if it is G-invariant and horizontal:

R∗gω = ω and ω|π−1(m) = 0

for all m ∈M . Here Rg : P → P is the right action of g ∈ G on P .

The proof is straightforward.

Corollary 10. Pullback along π : E•G → B•G induces an isomorphism of com-
plexes

Aq(B•G) ∼= Aqbasic(E•G) ⊂ Aq(E•G).

Definition 11. Define the cosimplicial vector space C•R as the composite

C•R : ∆ ↪→ Set
free−−→ VectR.

In other words, CnR is the vector space of dimension n+ 1: denote by ei the basis
vector of CnR = Rn+1 corresponding to i ∈ [n]. The ith coface map is the inclusion
that misses ei and the ith codegeneracy map is the surjection that sends ei and
ei+1 to ei. There is a (levelwise) surjection of cosimplicial vector spaces

C•R s−→ R→ 0

to the constant one-dimensional cosimplicial vector space given (in degree n)

s

(
n+1∑
i=0

aiei

)
=

n+1∑
i=0

ai.

If we define Σ•R = ker s we obtain a short exact sequence of cosimplicial vector
spaces

0→ Σ•R→ C•R→ R→ 0.

Remark 12. Beware that the map s is not a coaugmentation of C•R – it goes the
wrong way!
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Now for any cosimplicial vector space V • we obtain cosimplicial vector spaces

C•V = C•R⊗R V
•

Σ•V = Σ•R⊗R V
•

that we call the cone and suspension of V •, respectively. They fit into a short exact
sequence

0→ Σ•V → C•V → V • → 0.

Notice that by Eilenberg-Zilber,

H∗NC•V = H∗(N(C•R⊗ V •))
= H∗NC•R⊗H∗NV •

= 0

whence
H∗NC•V = 0 and H∗NΣ•V = V [−1].

With this notation established, we arrive at the statement of the first result.

Lemma 13 (Decomposition lemma). Let G be a Lie group and let g∨ be the
vector space of left-invariant 1-forms on G, viewed as a G-module under right-
multiplication. Then

Aq(B•G) ∼= diag
(
A0(E•G)⊗ ΛqΣ•g∨

)G
.

In words: the cosimplicial vector space of q-forms on B•G is isomorphic to the
diagonal cosimplicial vector space obtained from the G-invariants of the bicosim-
plicial G-module in parentheses.

Proof. As noted above,
Aq(B•G) ∼= Aqbasic(E•G).

The right hand side of the decomposition above is just another way of capturing
the basic forms on E•G. We can see this as follows. If we choose a basis for the
Lie algebra g then we obtain a global frame for the cotangent bundle of G, whence
A1(Gn+1) = A0(Gn+1)⊗ (g∨)⊕n+1. More explicitly, we have an isomorphism

φn : A0(EnG)⊗ Cng∨ → A1(EnG)
n∑
k=0

fk ⊗ ξk 7→
n∑
k=0

fk · π∗kξk,

where πk : EnG = Gn+1 → G is projection onto the kth factor. We are interested in
the subspace of horizontal forms, i.e. those that restricted to a fiber of EnG→ BnG
are zero. For p = (p0, . . . , pn) ∈ EnG write the inclusion of a fiber

ιp : G→ EnG = Gn+1

g 7→ (p0g, . . . , png).

If we now restrict along ιp we get

ι∗p

(
n∑
k=0

fk · π∗kξk

)
=

n∑
k=0

fk · (πk ◦ ιp)∗ξk =

n∑
k=0

fk · ξk.

Here we have used that the composition πk ◦ ιp : G → G is left-multiplication by
pk,

πk(ιp(g)) = πk(p0g, . . . , png) = pkg,
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together with the left-invariance of ξk ∈ g∨ ⊂ A1(G). We thus conclude that

A1
horiz(EnG) = A0(EnG)⊗ Σng∨,

from which we obtain

Aqhoriz(EnG) = A0(EnG)⊗ ΛqΣng∨,

Taking invariants (and checking cosimplicial structure maps) results in the desired
decomposition

Aqbasic(E•G) = diag
(
A0(E•G)⊗ ΛqΣ•g∨

)G
.

�

As one might expect, we can throw away the first term due to the contractibility
of the universal bundle.

Lemma 14. For G compact there is a weak equivalence

diag
(
A0(E•G)⊗ ΛqΣ•g∨

)G ' (ΛqΣ•g∨)
G
.

of cosimplicial vector spaces (i.e. a quasi-isomorphism on complexes).

Proof sketch. By the (Dold and Puppe generalization of the) Eilenberg-Zilber theo-
rem, the cohomology of the diagonal can be computed instead as the cohomology of
the total complex of the Moore double complex of the given bisimplicial G-module.
Notice that the cosimplicial vector space A0(E•G) admits an extra codegeneracy
(as E•G admits an extra degeneracy). This is not enough to prove acyclicity of the
rows, however, due to the (−)G. Instead we need an extra codegeneracy of cosim-
plicial G-modules. This is where the compactness of G comes into play: usually
the extra degeneracy on E•G is given by insertion of the identity as the first factor,
but we can instead take an average over the insertion of every element of G, using
the Haar measure. �

We now have an equivalence of cosimplicial vector spaces

Aq(B•G) ' (ΛqΣ•g∨)
G
.

To finish the proof of Bott’s result we must now compute the cohomology of the
right-hand side.

Proposition 15. There is a weak equivalence

N (ΛqΣ•g∨)
G ' Symq(g∨)G[−q].

The statement involves an interplay between the alternating and symmetric
power functors so it is natural to start by thinking about the tensor power functor.
Write Sq for the symmetric group on q letters and

T q : ModG → Bimod(G,Sq)

for the functor sending a G-module V to the qth tensor power V ⊗· · ·⊗V equipped
with the diagonal action of G and the permutation action of Sq.

Proposition 16. There is an isomorphism

H∗N(T qΣ•V )G ∼= (T̄ qV )G[−q].
Here T̄ qV is T qV with RSq-module structure twisted by the determinant (or sign)
character.
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Proof. Applying Eilenberg-Zilber,

H∗N(T qΣ•V )G = H∗N(Σ•V ⊗ · · · ⊗ Σ•V )G

∼= H∗ (NΣ•V ⊗ · · · ⊗NΣ•V )
G

∼= (H∗NΣ•V ⊗ · · · ⊗H∗NΣ•V )
G

∼= (T̄ qV )G[−q]

The T̄ q appears instead of the untwisted T q because the identificationN(C•⊗D•) '
NC• ⊗ND• introduces Koszul signs upon permutation of factors. �

We are interested in subfunctors of the tensor power functor — in particular the
alternating and symmetric power functors. These can be obtained by projection
using central idempotents in the group algebra RSq.

Proof of proposition. Let e ∈ RSq be a central idempotent,1 and consider the cor-
responding direct sum decomposition

e · T qV T qV

ι

e

We obtain an induced decomposition

H∗(NΣ•e · T qV )G H∗(NΣ•T qV )G ∼= (T̄ qV )G[−q]

whence
H∗(NΣ•e · T qV )G = e · (T̄ qV )G[−q].

The group algebra RSq admits an involution (·) given by σ 7→ σ̄ = detσ · σ.
Twisting the action of Sq on T qV by this involution clearly yields T̄ qV , whence we
obtain an isomorphism of underlying vector spaces

(e · T̄ qV )G = (ē · T qV )G.

We conclude that
H∗(NΣ•e · T qV )G ∼= (ē · T qV )G[−q].

Using the fact that this involution interchanges alternation and symmetrization and
taking V = g∨, we obtain the proposition as well as Bott’s theorem. �

3. Applications

The computation of differential forms on B•G has a number of interesting ap-
plications; here I will focus on some immediate corollaries pertaining to the topol-
ogy/geometry of the classifying stack itself.

There is a relatively recent notion of (shifted) symplectic structures on (derived)
stacks due to Pantev-Toen-Vaquié-Vezzosi: one of their fundamental examples is
the classifying stack of a reductive algebraic group. In the smooth setting that we
are working in, we obtain the following.

1E.g. if q = 2 then e = (1 + τ)/2 or e = (1 − τ)/2, where τ is the transposition, in the case of
symmetric and alternating powers respectively.
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Corollary 17. For G a compact Lie group, the set of 2-shifted symplectic structures
on B•G is the set of Killing forms on g (nondegenerate invariant symmetric bilinear
forms on g).

Once we define what a 2-shifted closed form on a simplicial manifold is, this
corollary is immediate. That the notion needs defining in the first place stems from
the fact a cocycle in a complex is not a homotopy invariant object. The way out is
to notice that the de Rham complex of manifold comes with a canonical filtration
known as the Hodge filtration

F pA∗X = 0→ ApX → Ap+1X → · · · ,
and that

H0(F pA∗X[p]) = ApclX.

Definition 18. Let X• be a simplicial manifold. The complex of closed p-forms on
X• is defined to be the total complex of the double complex obtained by applying
F pA∗ to X•,

Apcl(X•) = F pA∗X•[p].

An n-shifted closed p-form ω is a degree n cocycle of this complex:

ω ∈ Zn+p(F pA∗X•).

Let’s unpack what an n-shifted closed p-form is, more concretely. We have

ω = (ω0, . . . , ωn), ωi ∈ Ap+n−i(Xi)

such that

δωn = 0

δωn−1 = ±dωn
...

δω0 = ±dω1

dω0 = 0.

In other words, a n-shifted closed p-form is a δ-closed p-form ωn on Xn (hence the
n-shifted p-form) whose de Rham differential is δ-exact via ωn−1 ∈ Ap+1(Xn−1).
Similarly ωn−1 is closed up to a δ-exact form, and so on and so forth until ω0, which
is a closed (p+ n)-form on X0.

Example 19. For X• = B•G in particular we have

Apcl(B•G) = 0→ Ap(G)→ Ap(G2)⊕Ap+1G→ Ap(G3)⊕Ap+1(G2)⊕Ap+2G→ · · ·
A 2-shifted closed 2-form on B•G is thus the data of

ω1 ∈ A3(G) and ω2 ∈ A2(G2)

such that

dω1 = 0 δω1 = ±dω2 δω2 = 0.

Proposition 20. The cohomology of the complex of closed p-forms on the simplicial
manifold B•G is

Hq(ApclB•G) =

{
0 q < p

Symq(g∨)G q ≥ p
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Proof. Consider the spectral sequence for the double complex of closed p-forms on
B•G where on the E2-page we first take horizontal cohomology and then vertical co-
homology. Bott’s computation tells us that the qth row is Symq(g∨)G concentrated
in degree q. Thus there are no nontrivial differentials and the spectral sequence
collapses at the E2 page. The result follows. �

We see in particular that the set of 2-shifted closed 2-forms on B•G is in bijection
with G-invariant symmetric bilinear forms on g. Now, I don’t want to go into the
notion of nondegeneracy of a 2-form on a simplicial manifold, but it is hopefully
reasonable that it restricts us to nondegenerate such bilinear forms, so I will declare
victory here.

Having symplectic structures on classifying stacks is useful, at least theoretically,
because moduli space are often constructed as mapping stacks with target classi-
fying stacks. By arguments that are known as AKSZ-type arguments, symplectic
structures can be “transgressed” from the classifying stack to the moduli spsace
(at the cost of further shifting). This provides a conceptual explanation for the
presence of symplectic (or sometimes more generally Poisson) structures on moduli
spaces.

Remark 21. Let G be a matrix group like U(n). connectedness?In this case the data of a symplectic
structure is the data of forms ω1 and ω2 living on products of U(n) and so it is
reasonable to hope that, given a Killing form on u(n), there is some sort of concrete
formula for these differential forms. This is the due to Shulman, who proceeds,
roughly, by choosing a universal connection on EnG→ BnG and using the Killing
form on u(n) to construct ω1 and ω2 following Chern and Weil. In particular, the
symplectic form on B•U(n) is constructed as the Shulman representative for the
second Chern class c2.

Remark 22. We have focused here on B•G, a simplicial representative for the clas-
sifying space of principal G-bundles. There exist higher categorical analogs of prin-
cipal bundles known as gerbes: instead of G-valued transition functions on double
overlaps of a cover, gerbes are defined by transition functions on triple overlaps. At
least in the abelian case, there is a nice theory of these “bundle gerbes” and they
are classified by the higher delooping B2A (or if you wish W̄ 2A).

It should be straightforward to prove an analog of Bott’s result for the classifying
spaces BnA for A a compact abelian Lie group (A = U(1) is of interest, say):

Hi(Aq(Bn•A)) ∼=

{
Symq(a∨)A q = 2n

0 q 6= 2n

and to conclude that BnA is equipped with a 2n-shifted symplectic structure,
though I haven’t worked out the details (I expect the proof to be more or less
identical if one uses the model W̄nA).
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